Cargando…

Hypoglycemic effect of resveratrol in type 2 diabetic model db/db mice and its actions in cultured L6 myotubes and RIN-5F pancreatic β-cells

Resveratrol, a phytoalexin present in the skin of grapes and red wine, has been demonstrated to possess a wide range of health promoting activities including anti-diabetic properties. In the present study, we investigated the effect of resveratrol in both type 2 diabetic mice and cell culture system...

Descripción completa

Detalles Bibliográficos
Autores principales: Minakawa, Miki, Kawano, Atutoshi, Miura, Yutaka, Yagasaki, Kazumi
Formato: Texto
Lenguaje:English
Publicado: the Society for Free Radical Research Japan 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082080/
https://www.ncbi.nlm.nih.gov/pubmed/21562645
http://dx.doi.org/10.3164/jcbn.10-119
Descripción
Sumario:Resveratrol, a phytoalexin present in the skin of grapes and red wine, has been demonstrated to possess a wide range of health promoting activities including anti-diabetic properties. In the present study, we investigated the effect of resveratrol in both type 2 diabetic mice and cell culture systems. In cultured L6 myotubes, we studied the effect of resveratrol on glucose uptake and translocation of glucose transporter 4 to plasma membrane from the aspects of insulin signaling and AMP-activated protein kinase signaling. In cultured RIN-5F cells, we examined whether resveratrol would protect the pancreas-derived β-cells from oxidative stress. Resveratrol significantly suppressed the elevation in the fasting blood glucose level and the serum triglyceride and lipid peroxide levels in db/db mice. Resveratrol stimulated glucose uptake and glucose transporter 4 translocation by activating both insulin signaling and AMP-activated protein kinase signaling. Moreover, resveratrol could protect pancreatic β-cells from advanced glycation end products-induced oxidative stress and apoptosis. From these results, resveratrol is suggested to show anti-diabetic effect by stimulating both insulin-dependent and -independent glucose uptake in muscles and by protecting pancreatic β-cells from advanced glycation end products-induced oxidative stress and apoptosis.