Cargando…
Structures and activities of archaeal members of the LigD 3′-phosphoesterase DNA repair enzyme superfamily
LigD 3′-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 3′-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis–à-vis other end-healing enzymes. PE homologs are present in archaea, but thei...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082917/ https://www.ncbi.nlm.nih.gov/pubmed/21208981 http://dx.doi.org/10.1093/nar/gkq1163 |
_version_ | 1782202353711054848 |
---|---|
author | Smith, Paul Nair, Pravin A. Das, Ushati Zhu, Hui Shuman, Stewart |
author_facet | Smith, Paul Nair, Pravin A. Das, Ushati Zhu, Hui Shuman, Stewart |
author_sort | Smith, Paul |
collection | PubMed |
description | LigD 3′-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 3′-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis–à-vis other end-healing enzymes. PE homologs are present in archaea, but their properties are uncharted. Here, we demonstrate the end-healing activities of two archaeal PEs—Candidatus Korarchaeum cryptofilum PE (CkoPE; 117 amino acids) and Methanosarcina barkeri PE (MbaPE; 151 amino acids)—and we report their atomic structures at 1.1 and 2.1 Å, respectively. Archaeal PEs are minimized versions of bacterial PE, consisting of an eight-stranded β barrel and a 3(10) helix. Their active sites are located in a crescent-shaped groove on the barrel’s outer surface, wherein two histidines and an aspartate coordinate manganese in an octahedral complex that includes two waters and a phosphate anion. The phosphate is in turn coordinated by arginine and histidine side chains. The conservation of active site architecture in bacterial and archaeal PEs, and the concordant effects of active site mutations, underscore a common catalytic mechanism, entailing transition state stabilization by manganese and the phosphate-binding arginine and histidine. Our results fortify the proposal that PEs comprise a DNA repair superfamily distributed widely among taxa. |
format | Text |
id | pubmed-3082917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-30829172011-04-27 Structures and activities of archaeal members of the LigD 3′-phosphoesterase DNA repair enzyme superfamily Smith, Paul Nair, Pravin A. Das, Ushati Zhu, Hui Shuman, Stewart Nucleic Acids Res Nucleic Acid Enzymes LigD 3′-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 3′-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis–à-vis other end-healing enzymes. PE homologs are present in archaea, but their properties are uncharted. Here, we demonstrate the end-healing activities of two archaeal PEs—Candidatus Korarchaeum cryptofilum PE (CkoPE; 117 amino acids) and Methanosarcina barkeri PE (MbaPE; 151 amino acids)—and we report their atomic structures at 1.1 and 2.1 Å, respectively. Archaeal PEs are minimized versions of bacterial PE, consisting of an eight-stranded β barrel and a 3(10) helix. Their active sites are located in a crescent-shaped groove on the barrel’s outer surface, wherein two histidines and an aspartate coordinate manganese in an octahedral complex that includes two waters and a phosphate anion. The phosphate is in turn coordinated by arginine and histidine side chains. The conservation of active site architecture in bacterial and archaeal PEs, and the concordant effects of active site mutations, underscore a common catalytic mechanism, entailing transition state stabilization by manganese and the phosphate-binding arginine and histidine. Our results fortify the proposal that PEs comprise a DNA repair superfamily distributed widely among taxa. Oxford University Press 2011-04 2011-01-05 /pmc/articles/PMC3082917/ /pubmed/21208981 http://dx.doi.org/10.1093/nar/gkq1163 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Nucleic Acid Enzymes Smith, Paul Nair, Pravin A. Das, Ushati Zhu, Hui Shuman, Stewart Structures and activities of archaeal members of the LigD 3′-phosphoesterase DNA repair enzyme superfamily |
title | Structures and activities of archaeal members of the LigD 3′-phosphoesterase DNA repair enzyme superfamily |
title_full | Structures and activities of archaeal members of the LigD 3′-phosphoesterase DNA repair enzyme superfamily |
title_fullStr | Structures and activities of archaeal members of the LigD 3′-phosphoesterase DNA repair enzyme superfamily |
title_full_unstemmed | Structures and activities of archaeal members of the LigD 3′-phosphoesterase DNA repair enzyme superfamily |
title_short | Structures and activities of archaeal members of the LigD 3′-phosphoesterase DNA repair enzyme superfamily |
title_sort | structures and activities of archaeal members of the ligd 3′-phosphoesterase dna repair enzyme superfamily |
topic | Nucleic Acid Enzymes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082917/ https://www.ncbi.nlm.nih.gov/pubmed/21208981 http://dx.doi.org/10.1093/nar/gkq1163 |
work_keys_str_mv | AT smithpaul structuresandactivitiesofarchaealmembersoftheligd3phosphoesterasednarepairenzymesuperfamily AT nairpravina structuresandactivitiesofarchaealmembersoftheligd3phosphoesterasednarepairenzymesuperfamily AT dasushati structuresandactivitiesofarchaealmembersoftheligd3phosphoesterasednarepairenzymesuperfamily AT zhuhui structuresandactivitiesofarchaealmembersoftheligd3phosphoesterasednarepairenzymesuperfamily AT shumanstewart structuresandactivitiesofarchaealmembersoftheligd3phosphoesterasednarepairenzymesuperfamily |