Cargando…

Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences

BACKGROUND: Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BE...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Peng, Li, Jiongtang, Li, Yan, Cui, Runzi, Wang, Jintu, Wang, Jian, Zhang, Yan, Zhao, Zixia, Sun, Xiaowen
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083359/
https://www.ncbi.nlm.nih.gov/pubmed/21492448
http://dx.doi.org/10.1186/1471-2164-12-188
_version_ 1782202384244539392
author Xu, Peng
Li, Jiongtang
Li, Yan
Cui, Runzi
Wang, Jintu
Wang, Jian
Zhang, Yan
Zhao, Zixia
Sun, Xiaowen
author_facet Xu, Peng
Li, Jiongtang
Li, Yan
Cui, Runzi
Wang, Jintu
Wang, Jian
Zhang, Yan
Zhao, Zixia
Sun, Xiaowen
author_sort Xu, Peng
collection PubMed
description BACKGROUND: Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. RESULT: To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. CONCLUSION: BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp.
format Text
id pubmed-3083359
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30833592011-04-28 Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences Xu, Peng Li, Jiongtang Li, Yan Cui, Runzi Wang, Jintu Wang, Jian Zhang, Yan Zhao, Zixia Sun, Xiaowen BMC Genomics Research Article BACKGROUND: Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. RESULT: To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. CONCLUSION: BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp. BioMed Central 2011-04-14 /pmc/articles/PMC3083359/ /pubmed/21492448 http://dx.doi.org/10.1186/1471-2164-12-188 Text en Copyright ©2011 Xu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Xu, Peng
Li, Jiongtang
Li, Yan
Cui, Runzi
Wang, Jintu
Wang, Jian
Zhang, Yan
Zhao, Zixia
Sun, Xiaowen
Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences
title Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences
title_full Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences
title_fullStr Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences
title_full_unstemmed Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences
title_short Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences
title_sort genomic insight into the common carp (cyprinus carpio) genome by sequencing analysis of bac-end sequences
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083359/
https://www.ncbi.nlm.nih.gov/pubmed/21492448
http://dx.doi.org/10.1186/1471-2164-12-188
work_keys_str_mv AT xupeng genomicinsightintothecommoncarpcyprinuscarpiogenomebysequencinganalysisofbacendsequences
AT lijiongtang genomicinsightintothecommoncarpcyprinuscarpiogenomebysequencinganalysisofbacendsequences
AT liyan genomicinsightintothecommoncarpcyprinuscarpiogenomebysequencinganalysisofbacendsequences
AT cuirunzi genomicinsightintothecommoncarpcyprinuscarpiogenomebysequencinganalysisofbacendsequences
AT wangjintu genomicinsightintothecommoncarpcyprinuscarpiogenomebysequencinganalysisofbacendsequences
AT wangjian genomicinsightintothecommoncarpcyprinuscarpiogenomebysequencinganalysisofbacendsequences
AT zhangyan genomicinsightintothecommoncarpcyprinuscarpiogenomebysequencinganalysisofbacendsequences
AT zhaozixia genomicinsightintothecommoncarpcyprinuscarpiogenomebysequencinganalysisofbacendsequences
AT sunxiaowen genomicinsightintothecommoncarpcyprinuscarpiogenomebysequencinganalysisofbacendsequences