Cargando…
Kernel regression for fMRI pattern prediction
This paper introduces two kernel-based regression schemes to decode or predict brain states from functional brain scans as part of the Pittsburgh Brain Activity Interpretation Competition (PBAIC) 2007, in which our team was awarded first place. Our procedure involved image realignment, spatial smoot...
Autores principales: | Chu, Carlton, Ni, Yizhao, Tan, Geoffrey, Saunders, Craig J., Ashburner, John |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084459/ https://www.ncbi.nlm.nih.gov/pubmed/20348000 http://dx.doi.org/10.1016/j.neuroimage.2010.03.058 |
Ejemplares similares
-
Multiclass Sparse Bayesian Regression for fMRI-Based Prediction
por: Michel, Vincent, et al.
Publicado: (2011) -
Regression dynamic causal modeling for resting‐state fMRI
por: Frässle, Stefan, et al.
Publicado: (2021) -
Spatial normalization of lesioned brains: Performance evaluation and impact on fMRI analyses
por: Crinion, Jenny, et al.
Publicado: (2007) -
Regression models for partially localized fMRI connectivity analyses
por: Smith, Bonnie B., et al.
Publicado: (2023) -
Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
por: Sidhu, Gagan S., et al.
Publicado: (2012)