Cargando…

Vascular contributions to pattern analysis: Comparing gradient and spin echo fMRI at 3T

Multivariate pattern analysis is often assumed to rely on signals that directly reflect differences in the distribution of particular neural populations. The source of the signal used in these analyses remains unclear however, and an alternative model suggests that signal from larger draining veins...

Descripción completa

Detalles Bibliográficos
Autores principales: Thompson, Russell, Correia, Marta, Cusack, Rhodri
Formato: Texto
Lenguaje:English
Publicado: Academic Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084461/
https://www.ncbi.nlm.nih.gov/pubmed/20350605
http://dx.doi.org/10.1016/j.neuroimage.2010.03.061
Descripción
Sumario:Multivariate pattern analysis is often assumed to rely on signals that directly reflect differences in the distribution of particular neural populations. The source of the signal used in these analyses remains unclear however, and an alternative model suggests that signal from larger draining veins may play a significant role. The current study was designed to investigate the vascular contribution to pattern analyses at 3T by comparing the results obtained from gradient and spin echo data. Classification analyses were carried out comparing line orientations in V1, tone frequencies in A1, and responses from different fingers in M1. In all cases, classification accuracy in the spin echo data was not significantly different from chance. In contrast, classification accuracies in the gradient echo data were significantly above chance, and significantly higher than the accuracies observed for the spin echo data. These results suggest that at the field strength and spatial resolution used for the majority of fMRI studies, a considerable proportion of the signal used by pattern analysis originates in the vasculature.