Cargando…
Evaluating Effects of Divided Hemispheric Processing on Word Recognition in Foveal and Extrafoveal Displays: The Evidence from Arabic
BACKGROUND: Previous studies have claimed that a precise split at the vertical midline of each fovea causes all words to the left and right of fixation to project to the opposite, contralateral hemisphere, and this division in hemispheric processing has considerable consequences for foveal word reco...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084692/ https://www.ncbi.nlm.nih.gov/pubmed/21559084 http://dx.doi.org/10.1371/journal.pone.0018131 |
Sumario: | BACKGROUND: Previous studies have claimed that a precise split at the vertical midline of each fovea causes all words to the left and right of fixation to project to the opposite, contralateral hemisphere, and this division in hemispheric processing has considerable consequences for foveal word recognition. However, research in this area is dominated by the use of stimuli from Latinate languages, which may induce specific effects on performance. Consequently, we report two experiments using stimuli from a fundamentally different, non-Latinate language (Arabic) that offers an alternative way of revealing effects of split-foveal processing, if they exist. METHODS AND FINDINGS: Words (and pseudowords) were presented to the left or right of fixation, either close to fixation and entirely within foveal vision, or further from fixation and entirely within extrafoveal vision. Fixation location and stimulus presentations were carefully controlled using an eye-tracker linked to a fixation-contingent display. To assess word recognition, Experiment 1 used the Reicher-Wheeler task and Experiment 2 used the lexical decision task. RESULTS: Performance in both experiments indicated a functional division in hemispheric processing for words in extrafoveal locations (in recognition accuracy in Experiment 1 and in reaction times and error rates in Experiment 2) but no such division for words in foveal locations. CONCLUSIONS: These findings from a non-Latinate language provide new evidence that although a functional division in hemispheric processing exists for word recognition outside the fovea, this division does not extend up to the point of fixation. Some implications for word recognition and reading are discussed. |
---|