Cargando…

Local sleep in awake rats

When the brain is awake, neurons in the cerebral cortex fire irregularly and the electroencephalogram (EEG) displays low amplitude, high frequency fluctuations. After falling asleep, neurons start oscillating between ON periods, when they fire as during wake, and OFF periods, when they stop firing a...

Descripción completa

Detalles Bibliográficos
Autores principales: Vyazovskiy, Vladyslav V., Olcese, Umberto, Hanlon, Erin C., Nir, Yuval, Cirelli, Chiara, Tononi, Giulio
Formato: Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085007/
https://www.ncbi.nlm.nih.gov/pubmed/21525926
http://dx.doi.org/10.1038/nature10009
Descripción
Sumario:When the brain is awake, neurons in the cerebral cortex fire irregularly and the electroencephalogram (EEG) displays low amplitude, high frequency fluctuations. After falling asleep, neurons start oscillating between ON periods, when they fire as during wake, and OFF periods, when they stop firing altogether, and the EEG displays high amplitude slow waves. But what happens to neuronal firing after a long period of wake? We show here in freely behaving rats that, after prolonged wake, cortical neurons can go briefly “OFF line” as they do in sleep, accompanied by slower waves in the local EEG. Strikingly, neurons often go OFF line in one cortical area and not in another. During these periods of “local sleep”, whose incidence increases with wake duration, rats appear awake, active, and display a wake EEG. However, they are progressively impaired in a sugar pellet reaching task. Thus, though both the EEG and behavior indicate wakefulness, local populations of neurons in the cortex may be falling asleep, with negative consequences on performance.