Cargando…

Functional K(V)10.1 Channels Localize to the Inner Nuclear Membrane

Ectopically expressed human K(V)10.1 channels are relevant players in tumor biology. However, their function as ion channels at the plasma membrane does not totally explain their crucial role in tumors. Both in native and heterologous systems, it has been observed that a majority of K(V)10.1 channel...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Ye, Sánchez, Araceli, Rubio, María E., Kohl, Tobias, Pardo, Luis A., Stühmer, Walter
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086910/
https://www.ncbi.nlm.nih.gov/pubmed/21559285
http://dx.doi.org/10.1371/journal.pone.0019257
Descripción
Sumario:Ectopically expressed human K(V)10.1 channels are relevant players in tumor biology. However, their function as ion channels at the plasma membrane does not totally explain their crucial role in tumors. Both in native and heterologous systems, it has been observed that a majority of K(V)10.1 channels remain at intracellular locations. In this study we investigated the localization and possible roles of perinuclear K(V)10.1. We show that K(V)10.1 is expressed at the inner nuclear membrane in both human and rat models; it co-purifies with established inner nuclear membrane markers, shows resistance to detergent extraction and restricted mobility, all of them typical features of proteins at the inner nuclear membrane. K(V)10.1 channels at the inner nuclear membrane are not all transported directly from the ER but rather have been exposed to the extracellular milieu. Patch clamp experiments on nuclei devoid of external nuclear membrane reveal the existence of channel activity compatible with K(V)10.1. We hypothesize that K(V)10.1 channels at the nuclear envelope might participate in the homeostasis of nuclear K(+), or indirectly interact with heterochromatin, both factors known to affect gene expression.