Cargando…
RCMAT: a regularized covariance matrix approach to testing gene sets
BACKGROUND: Gene sets are widely used to interpret genome-scale data. Analysis techniques that make better use of the correlation structure of microarray data while addressing practical "n<p" concerns could provide a real increase in power. However correlation structure is hard to estim...
Autores principales: | Yates, Phillip D, Reimers, Mark A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087342/ https://www.ncbi.nlm.nih.gov/pubmed/19772589 http://dx.doi.org/10.1186/1471-2105-10-300 |
Ejemplares similares
-
Construction and use of gene expression covariation matrix
por: Hennetin, Jérôme, et al.
Publicado: (2009) -
Model errors in tree biomass estimates computed with an approximation to a missing covariance matrix
por: Magnussen, Steen, et al.
Publicado: (2015) -
The application of sparse estimation of covariance matrix to quadratic discriminant analysis
por: Sun, Jiehuan, et al.
Publicado: (2015) -
Unsupervised gene set testing based on random matrix theory
por: Frost, H. Robert, et al.
Publicado: (2016) -
Quantitative gene set analysis generalized for repeated measures, confounder adjustment, and continuous covariates
por: Turner, Jacob A., et al.
Publicado: (2015)