Cargando…
An adaptive non-local means filter for denoising live-cell images and improving particle detection
Fluorescence imaging of dynamical processes in live cells often results in a low signal-to-noise ratio. We present a novel feature-preserving non-local means approach to denoise such images to improve feature recovery and particle detection. The commonly used non-local means filter is not optimal fo...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087503/ https://www.ncbi.nlm.nih.gov/pubmed/20599512 http://dx.doi.org/10.1016/j.jsb.2010.06.019 |
Sumario: | Fluorescence imaging of dynamical processes in live cells often results in a low signal-to-noise ratio. We present a novel feature-preserving non-local means approach to denoise such images to improve feature recovery and particle detection. The commonly used non-local means filter is not optimal for noisy biological images containing small features of interest because image noise prevents accurate determination of the correct coefficients for averaging, leading to over-smoothing and other artifacts. Our adaptive method addresses this problem by constructing a particle feature probability image, which is based on Haar-like feature extraction. The particle probability image is then used to improve the estimation of the correct coefficients for averaging. We show that this filter achieves higher peak signal-to-noise ratio in denoised images and has a greater capability in identifying weak particles when applied to synthetic data. We have applied this approach to live-cell images resulting in enhanced detection of end-binding-protein 1 foci on dynamically extending microtubules in photo-sensitive Drosophila tissues. We show that our feature-preserving non-local means filter can reduce the threshold of imaging conditions required to obtain meaningful data. |
---|