Cargando…

Spectral-profile-based algorithm for hemoglobin oxygen saturation determination from diffuse reflectance spectra

Variations of hemoglobin (Hb) oxygenation in tissue provide important indications concerning the physiological conditions of tissue, and the data related to these variations are of intense interest in medical research as well as in clinical care. In this study, we derived a new algorithm to estimate...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Po-Ching, Lin, Wei-Chiang
Formato: Texto
Lenguaje:English
Publicado: Optical Society of America 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087566/
https://www.ncbi.nlm.nih.gov/pubmed/21559121
http://dx.doi.org/10.1364/BOE.2.001082
Descripción
Sumario:Variations of hemoglobin (Hb) oxygenation in tissue provide important indications concerning the physiological conditions of tissue, and the data related to these variations are of intense interest in medical research as well as in clinical care. In this study, we derived a new algorithm to estimate Hb oxygenation from diffuse reflectance spectra. The algorithm was developed based on the unique spectral profile differences between the extinction coefficient spectra of oxy-Hb and deoxy-Hb within the visible wavelength region. Using differential wavelet transformation, these differences were quantified using the locations of certain spectral features, and, then, they were related to the oxygenation saturation level of Hb. The applicability of the algorithm was evaluated using a set of diffuse reflectance spectra produced by a Monte Carlo simulation model of photon migration and by tissue phantoms experimentally. The algorithm was further applied to the diffuse reflectance spectra acquired from in vivo experiments to demonstrate its clinical utility. The validation and evaluation results concluded that the algorithm is applicable to various tissue types (i.e., scattering properties) and can be easily used in conjunction with a diverse range of probe geometries for real-time monitoring of Hb oxygenation.