Cargando…
Dual-channel imaging system for singlet oxygen and photosensitizer for PDT
A two-channel optical system has been developed to provide spatially resolved simultaneous imaging of singlet molecular oxygen ((1)O(2)) phosphorescence and photosensitizer (PS) fluorescence produced by the photodynamic process. The current imaging system uses a spectral discrimination method to dif...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087579/ https://www.ncbi.nlm.nih.gov/pubmed/21559134 http://dx.doi.org/10.1364/BOE.2.001233 |
Sumario: | A two-channel optical system has been developed to provide spatially resolved simultaneous imaging of singlet molecular oxygen ((1)O(2)) phosphorescence and photosensitizer (PS) fluorescence produced by the photodynamic process. The current imaging system uses a spectral discrimination method to differentiate the weak (1)O(2) phosphorescence that peaks near 1.27 μm from PS fluorescence that also occurs in this spectral region. The detection limit of (1)O(2) emission was determined at a concentration of 500 nM benzoporphyrin derivative monoacid (BPD) in tissue-like phantoms, and these signals observed were proportional to the PS fluorescence. Preliminary in vivo images with tumor laden mice indicate that it is possible to obtain simultaneous images of (1)O(2) and PS tissue distribution. |
---|