Cargando…

Segmentation of Doppler optical coherence tomography signatures using a support-vector machine

When processing Doppler optical coherence tomography images, there is a need to segment the Doppler signatures of the vessels. This can be used for visualization, for finding the center point of the flow areas or to facilitate the quantitative analysis of the vessel flow. We propose the use of a sup...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Amardeep S. G., Schmoll, Tilman, Leitgeb, Rainer A.
Formato: Texto
Lenguaje:English
Publicado: Optical Society of America 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087589/
https://www.ncbi.nlm.nih.gov/pubmed/21559144
http://dx.doi.org/10.1364/BOE.2.001328
_version_ 1782202804899676160
author Singh, Amardeep S. G.
Schmoll, Tilman
Leitgeb, Rainer A.
author_facet Singh, Amardeep S. G.
Schmoll, Tilman
Leitgeb, Rainer A.
author_sort Singh, Amardeep S. G.
collection PubMed
description When processing Doppler optical coherence tomography images, there is a need to segment the Doppler signatures of the vessels. This can be used for visualization, for finding the center point of the flow areas or to facilitate the quantitative analysis of the vessel flow. We propose the use of a support-vector machine classifier in order to segment the flow. It uses the phase values of the Doppler image as well as texture information. We show that superior results compared to conventional simple threshold-based methods can be achieved in conditions of significant phase noise, which inhibit the use of a simple threshold of the phase values.
format Text
id pubmed-3087589
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Optical Society of America
record_format MEDLINE/PubMed
spelling pubmed-30875892011-05-10 Segmentation of Doppler optical coherence tomography signatures using a support-vector machine Singh, Amardeep S. G. Schmoll, Tilman Leitgeb, Rainer A. Biomed Opt Express Optical Coherence Tomography When processing Doppler optical coherence tomography images, there is a need to segment the Doppler signatures of the vessels. This can be used for visualization, for finding the center point of the flow areas or to facilitate the quantitative analysis of the vessel flow. We propose the use of a support-vector machine classifier in order to segment the flow. It uses the phase values of the Doppler image as well as texture information. We show that superior results compared to conventional simple threshold-based methods can be achieved in conditions of significant phase noise, which inhibit the use of a simple threshold of the phase values. Optical Society of America 2011-04-26 /pmc/articles/PMC3087589/ /pubmed/21559144 http://dx.doi.org/10.1364/BOE.2.001328 Text en ©2011 Optical Society of America http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License, which permits download and redistribution, provided that the original work is properly cited. This license restricts the article from being modified or used commercially.
spellingShingle Optical Coherence Tomography
Singh, Amardeep S. G.
Schmoll, Tilman
Leitgeb, Rainer A.
Segmentation of Doppler optical coherence tomography signatures using a support-vector machine
title Segmentation of Doppler optical coherence tomography signatures using a support-vector machine
title_full Segmentation of Doppler optical coherence tomography signatures using a support-vector machine
title_fullStr Segmentation of Doppler optical coherence tomography signatures using a support-vector machine
title_full_unstemmed Segmentation of Doppler optical coherence tomography signatures using a support-vector machine
title_short Segmentation of Doppler optical coherence tomography signatures using a support-vector machine
title_sort segmentation of doppler optical coherence tomography signatures using a support-vector machine
topic Optical Coherence Tomography
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087589/
https://www.ncbi.nlm.nih.gov/pubmed/21559144
http://dx.doi.org/10.1364/BOE.2.001328
work_keys_str_mv AT singhamardeepsg segmentationofdoppleropticalcoherencetomographysignaturesusingasupportvectormachine
AT schmolltilman segmentationofdoppleropticalcoherencetomographysignaturesusingasupportvectormachine
AT leitgebrainera segmentationofdoppleropticalcoherencetomographysignaturesusingasupportvectormachine