Cargando…

Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes

BACKGROUND: GlnR is an atypical response regulator found in actinomycetes that modulates the transcription of genes in response to changes in nitrogen availability. We applied a global in vivo approach to identify the GlnR regulon of Streptomyces venezuelae, which, unlike many actinomycetes, grows i...

Descripción completa

Detalles Bibliográficos
Autores principales: Pullan, Steven T, Chandra, Govind, Bibb, Mervyn J, Merrick, Mike
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087709/
https://www.ncbi.nlm.nih.gov/pubmed/21463507
http://dx.doi.org/10.1186/1471-2164-12-175
_version_ 1782202817828618240
author Pullan, Steven T
Chandra, Govind
Bibb, Mervyn J
Merrick, Mike
author_facet Pullan, Steven T
Chandra, Govind
Bibb, Mervyn J
Merrick, Mike
author_sort Pullan, Steven T
collection PubMed
description BACKGROUND: GlnR is an atypical response regulator found in actinomycetes that modulates the transcription of genes in response to changes in nitrogen availability. We applied a global in vivo approach to identify the GlnR regulon of Streptomyces venezuelae, which, unlike many actinomycetes, grows in a diffuse manner that is suitable for physiological studies. Conditions were defined that facilitated analysis of GlnR-dependent induction of gene expression in response to rapid nitrogen starvation. Microarray analysis identified global transcriptional differences between glnR(+ )and glnR mutant strains under varying nitrogen conditions. To differentiate between direct and indirect regulatory effects of GlnR, chromatin immuno-precipitation (ChIP) using antibodies specific to a FLAG-tagged GlnR protein, coupled with microarray analysis (ChIP-chip), was used to identify GlnR binding sites throughout the S. venezuelae genome. RESULTS: GlnR bound to its target sites in both transcriptionally active and apparently inactive forms. Thirty-six GlnR binding sites were identified by ChIP-chip analysis allowing derivation of a consensus GlnR-binding site for S. venezuelae. GlnR-binding regions were associated with genes involved in primary nitrogen metabolism, secondary metabolism, the synthesis of catabolic enzymes and a number of transport-related functions. CONCLUSIONS: The GlnR regulon of S. venezuelae is extensive and impacts on many facets of the organism's biology. GlnR can apparently bind to its target sites in both transcriptionally active and inactive forms.
format Text
id pubmed-3087709
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30877092011-05-05 Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes Pullan, Steven T Chandra, Govind Bibb, Mervyn J Merrick, Mike BMC Genomics Research Article BACKGROUND: GlnR is an atypical response regulator found in actinomycetes that modulates the transcription of genes in response to changes in nitrogen availability. We applied a global in vivo approach to identify the GlnR regulon of Streptomyces venezuelae, which, unlike many actinomycetes, grows in a diffuse manner that is suitable for physiological studies. Conditions were defined that facilitated analysis of GlnR-dependent induction of gene expression in response to rapid nitrogen starvation. Microarray analysis identified global transcriptional differences between glnR(+ )and glnR mutant strains under varying nitrogen conditions. To differentiate between direct and indirect regulatory effects of GlnR, chromatin immuno-precipitation (ChIP) using antibodies specific to a FLAG-tagged GlnR protein, coupled with microarray analysis (ChIP-chip), was used to identify GlnR binding sites throughout the S. venezuelae genome. RESULTS: GlnR bound to its target sites in both transcriptionally active and apparently inactive forms. Thirty-six GlnR binding sites were identified by ChIP-chip analysis allowing derivation of a consensus GlnR-binding site for S. venezuelae. GlnR-binding regions were associated with genes involved in primary nitrogen metabolism, secondary metabolism, the synthesis of catabolic enzymes and a number of transport-related functions. CONCLUSIONS: The GlnR regulon of S. venezuelae is extensive and impacts on many facets of the organism's biology. GlnR can apparently bind to its target sites in both transcriptionally active and inactive forms. BioMed Central 2011-04-04 /pmc/articles/PMC3087709/ /pubmed/21463507 http://dx.doi.org/10.1186/1471-2164-12-175 Text en Copyright ©2011 Pullan et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Pullan, Steven T
Chandra, Govind
Bibb, Mervyn J
Merrick, Mike
Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes
title Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes
title_full Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes
title_fullStr Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes
title_full_unstemmed Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes
title_short Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes
title_sort genome-wide analysis of the role of glnr in streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087709/
https://www.ncbi.nlm.nih.gov/pubmed/21463507
http://dx.doi.org/10.1186/1471-2164-12-175
work_keys_str_mv AT pullanstevent genomewideanalysisoftheroleofglnrinstreptomycesvenezuelaeprovidesnewinsightsintoglobalnitrogenregulationinactinomycetes
AT chandragovind genomewideanalysisoftheroleofglnrinstreptomycesvenezuelaeprovidesnewinsightsintoglobalnitrogenregulationinactinomycetes
AT bibbmervynj genomewideanalysisoftheroleofglnrinstreptomycesvenezuelaeprovidesnewinsightsintoglobalnitrogenregulationinactinomycetes
AT merrickmike genomewideanalysisoftheroleofglnrinstreptomycesvenezuelaeprovidesnewinsightsintoglobalnitrogenregulationinactinomycetes