Cargando…
Democratic Population Decisions Result in Robust Policy-Gradient Learning: A Parametric Study with GPU Simulations
High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this directio...
Autores principales: | Richmond, Paul, Buesing, Lars, Giugliano, Michele, Vasilaki, Eleni |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087717/ https://www.ncbi.nlm.nih.gov/pubmed/21572529 http://dx.doi.org/10.1371/journal.pone.0018539 |
Ejemplares similares
-
Emergence of Connectivity Motifs in Networks of Model Neurons with Short- and Long-Term Plastic Synapses
por: Vasilaki, Eleni, et al.
Publicado: (2014) -
Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail
por: Vasilaki, Eleni, et al.
Publicado: (2009) -
Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity
por: Esposito, Umberto, et al.
Publicado: (2015) -
Correction: Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail
por: Vasilaki, Eleni, et al.
Publicado: (2009) -
QSpike tools: a generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays
por: Mahmud, Mufti, et al.
Publicado: (2014)