Cargando…
Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome
BACKGROUND: Traumatic brain injury is a major cause of morbidity and mortality worldwide. Ameliorating the neurocognitive and physical deficits that accompany traumatic brain injury would be of substantial benefit, but the mechanisms that underlie them are poorly characterized. This study aimed to u...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087728/ https://www.ncbi.nlm.nih.gov/pubmed/21573228 http://dx.doi.org/10.1371/journal.pone.0019214 |
_version_ | 1782202822331203584 |
---|---|
author | Newcombe, Virginia Chatfield, Doris Outtrim, Joanne Vowler, Sarah Manktelow, Anne Cross, Justin Scoffings, Daniel Coleman, Martin Hutchinson, Peter Coles, Jonathan Carpenter, T. Adrian Pickard, John Williams, Guy Menon, David |
author_facet | Newcombe, Virginia Chatfield, Doris Outtrim, Joanne Vowler, Sarah Manktelow, Anne Cross, Justin Scoffings, Daniel Coleman, Martin Hutchinson, Peter Coles, Jonathan Carpenter, T. Adrian Pickard, John Williams, Guy Menon, David |
author_sort | Newcombe, Virginia |
collection | PubMed |
description | BACKGROUND: Traumatic brain injury is a major cause of morbidity and mortality worldwide. Ameliorating the neurocognitive and physical deficits that accompany traumatic brain injury would be of substantial benefit, but the mechanisms that underlie them are poorly characterized. This study aimed to use diffusion tensor imaging to relate clinical outcome to the burden of white matter injury. METHODOLOGY/PRINCIPAL FINDINGS: Sixty-eight patients, categorized by the Glasgow Outcome Score, underwent magnetic resonance imaging at a median of 11.8 months (range 6.6 months to 3.7 years) years post injury. Control data were obtained from 36 age-matched healthy volunteers. Mean fractional anisotropy, apparent diffusion coefficient (ADC), and eigenvalues were obtained for regions of interest commonly affected in traumatic brain injury. In a subset of patients where conventional magnetic resonance imaging was completely normal, diffusion tensor imaging was able to detect clear abnormalities. Significant trends of increasing ADC with worse outcome were noted in all regions of interest. In the white matter regions of interest worse clinical outcome corresponded with significant trends of decreasing fractional anisotropy. CONCLUSIONS/SIGNIFICANCE: This study found that clinical outcome was related to the burden of white matter injury, quantified by diffusivity parameters late after traumatic brain injury. These differences were seen even in patients with the best outcomes and patients in whom conventional magnetic resonance imaging was normal, suggesting that diffusion tensor imaging can detect subtle injury missed by other techniques. An improved in vivo understanding of the pathology of traumatic brain injury, including its distribution and extent, may enhance outcome evaluation and help to provide a mechanistic basis for deficits that remain unexplained by other approaches. |
format | Text |
id | pubmed-3087728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30877282011-05-13 Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome Newcombe, Virginia Chatfield, Doris Outtrim, Joanne Vowler, Sarah Manktelow, Anne Cross, Justin Scoffings, Daniel Coleman, Martin Hutchinson, Peter Coles, Jonathan Carpenter, T. Adrian Pickard, John Williams, Guy Menon, David PLoS One Research Article BACKGROUND: Traumatic brain injury is a major cause of morbidity and mortality worldwide. Ameliorating the neurocognitive and physical deficits that accompany traumatic brain injury would be of substantial benefit, but the mechanisms that underlie them are poorly characterized. This study aimed to use diffusion tensor imaging to relate clinical outcome to the burden of white matter injury. METHODOLOGY/PRINCIPAL FINDINGS: Sixty-eight patients, categorized by the Glasgow Outcome Score, underwent magnetic resonance imaging at a median of 11.8 months (range 6.6 months to 3.7 years) years post injury. Control data were obtained from 36 age-matched healthy volunteers. Mean fractional anisotropy, apparent diffusion coefficient (ADC), and eigenvalues were obtained for regions of interest commonly affected in traumatic brain injury. In a subset of patients where conventional magnetic resonance imaging was completely normal, diffusion tensor imaging was able to detect clear abnormalities. Significant trends of increasing ADC with worse outcome were noted in all regions of interest. In the white matter regions of interest worse clinical outcome corresponded with significant trends of decreasing fractional anisotropy. CONCLUSIONS/SIGNIFICANCE: This study found that clinical outcome was related to the burden of white matter injury, quantified by diffusivity parameters late after traumatic brain injury. These differences were seen even in patients with the best outcomes and patients in whom conventional magnetic resonance imaging was normal, suggesting that diffusion tensor imaging can detect subtle injury missed by other techniques. An improved in vivo understanding of the pathology of traumatic brain injury, including its distribution and extent, may enhance outcome evaluation and help to provide a mechanistic basis for deficits that remain unexplained by other approaches. Public Library of Science 2011-05-04 /pmc/articles/PMC3087728/ /pubmed/21573228 http://dx.doi.org/10.1371/journal.pone.0019214 Text en Newcombe et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Newcombe, Virginia Chatfield, Doris Outtrim, Joanne Vowler, Sarah Manktelow, Anne Cross, Justin Scoffings, Daniel Coleman, Martin Hutchinson, Peter Coles, Jonathan Carpenter, T. Adrian Pickard, John Williams, Guy Menon, David Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome |
title | Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome |
title_full | Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome |
title_fullStr | Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome |
title_full_unstemmed | Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome |
title_short | Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome |
title_sort | mapping traumatic axonal injury using diffusion tensor imaging: correlations with functional outcome |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087728/ https://www.ncbi.nlm.nih.gov/pubmed/21573228 http://dx.doi.org/10.1371/journal.pone.0019214 |
work_keys_str_mv | AT newcombevirginia mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT chatfielddoris mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT outtrimjoanne mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT vowlersarah mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT manktelowanne mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT crossjustin mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT scoffingsdaniel mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT colemanmartin mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT hutchinsonpeter mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT colesjonathan mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT carpentertadrian mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT pickardjohn mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT williamsguy mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome AT menondavid mappingtraumaticaxonalinjuryusingdiffusiontensorimagingcorrelationswithfunctionaloutcome |