Cargando…
Rate Control in Atrial Fibrillation by Cooling: Effect of Temperature on Dromotropy in Perfused Rabbit Hearts
Background. Cooling has emerged as a therapeutic option in critically ill patients (especially after cardiac resuscitation) and might also have a negative dromotropic effect in atrial fibrillation. We sought to determine the impact of cooling on electrophysiologic properties of Langendorff-perfused...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
SAGE-Hindawi Access to Research
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087890/ https://www.ncbi.nlm.nih.gov/pubmed/21559254 http://dx.doi.org/10.4061/2011/162984 |
Sumario: | Background. Cooling has emerged as a therapeutic option in critically ill patients (especially after cardiac resuscitation) and might also have a negative dromotropic effect in atrial fibrillation. We sought to determine the impact of cooling on electrophysiologic properties of Langendorff-perfused rabbit hearts. Methods and Results. In 20 isolated Langendorff-perfused rabbit hearts, the temperature of the tissue bath was changed between 17 and 42°C. With decreasing temperature, significant increases of the spontaneous sinus cycle length, decreases of the mean ventricular heart rate during atrial fibrillation, and relevant increases of atrial and ventricular refractory periods were observed (ANOVA P < .01). Conclusions. Cardiac hypothermia leads to a significant drop of mean ventricular heart rate during atrial fibrillation. Negative chronotropy and dromotropy induced by moderate cardiac hypothermia might be a feasible therapeutic approach in patients with hemodynamically relevant tachyarrhythmias in a CCU/ICU setting. |
---|