Cargando…

Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain

BACKGROUND: In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color in situ hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this techni...

Descripción completa

Detalles Bibliográficos
Autores principales: Lauter, Gilbert, Söll, Iris, Hauptmann, Giselbert
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088888/
https://www.ncbi.nlm.nih.gov/pubmed/21466670
http://dx.doi.org/10.1186/1749-8104-6-10
_version_ 1782202948242112512
author Lauter, Gilbert
Söll, Iris
Hauptmann, Giselbert
author_facet Lauter, Gilbert
Söll, Iris
Hauptmann, Giselbert
author_sort Lauter, Gilbert
collection PubMed
description BACKGROUND: In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color in situ hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this technique, visualization of overlapping transcript distributions by differently colored precipitates remains difficult because of masking of lighter signals by darker color precipitates and lack of three-dimensional visualization properties. Fluorescent detection of transcript distributions may be able to solve these issues. However, despite the use of signal amplification systems for increasing sensitivity, fluorescent detection in whole-mounts suffers from rapid quenching of peroxidase (POD) activity compared to alkaline phosphatase chromogenic reactions. Thus, less strongly expressed genes cannot be efficiently detected. RESULTS: We developed an optimized procedure for fluorescent detection of transcript distribution in whole-mount zebrafish embryos using tyramide signal amplification (TSA). Conditions for hybridization and POD-TSA reaction were optimized by the application of the viscosity-increasing polymer dextran sulfate and the use of the substituted phenol compounds 4-iodophenol and vanillin as enhancers of POD activity. In combination with highly effective bench-made tyramide substrates, these improvements resulted in dramatically increased signal-to-noise ratios. The strongly enhanced signal intensities permitted fluorescent visualization of less abundant transcripts of tissue-specific regulatory genes. When performing multicolor fluorescent in situ hybridization (FISH) experiments, the highly sensitive POD reaction conditions required effective POD inactivation after each detection cycle by glycine-hydrochloric acid treatment. This optimized FISH procedure permitted the simultaneous fluorescent visualization of up to three unique transcripts in different colors in whole-mount zebrafish embryos. CONCLUSIONS: Development of a multicolor FISH procedure allowed the comparison of transcript gene expression domains in the embryonic zebrafish brain to a cellular level. Likewise, this method should be applicable for mRNA colocalization studies in any other tissues or organs. The key optimization steps of this method for use in zebrafish can easily be implemented in whole-mount FISH protocols of other organisms. Moreover, our improved reaction conditions may be beneficial in any application that relies on a TSA/POD-mediated detection system, such as immunocytochemical or immunohistochemical methods.
format Text
id pubmed-3088888
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-30888882011-05-07 Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain Lauter, Gilbert Söll, Iris Hauptmann, Giselbert Neural Dev Methodology BACKGROUND: In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color in situ hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this technique, visualization of overlapping transcript distributions by differently colored precipitates remains difficult because of masking of lighter signals by darker color precipitates and lack of three-dimensional visualization properties. Fluorescent detection of transcript distributions may be able to solve these issues. However, despite the use of signal amplification systems for increasing sensitivity, fluorescent detection in whole-mounts suffers from rapid quenching of peroxidase (POD) activity compared to alkaline phosphatase chromogenic reactions. Thus, less strongly expressed genes cannot be efficiently detected. RESULTS: We developed an optimized procedure for fluorescent detection of transcript distribution in whole-mount zebrafish embryos using tyramide signal amplification (TSA). Conditions for hybridization and POD-TSA reaction were optimized by the application of the viscosity-increasing polymer dextran sulfate and the use of the substituted phenol compounds 4-iodophenol and vanillin as enhancers of POD activity. In combination with highly effective bench-made tyramide substrates, these improvements resulted in dramatically increased signal-to-noise ratios. The strongly enhanced signal intensities permitted fluorescent visualization of less abundant transcripts of tissue-specific regulatory genes. When performing multicolor fluorescent in situ hybridization (FISH) experiments, the highly sensitive POD reaction conditions required effective POD inactivation after each detection cycle by glycine-hydrochloric acid treatment. This optimized FISH procedure permitted the simultaneous fluorescent visualization of up to three unique transcripts in different colors in whole-mount zebrafish embryos. CONCLUSIONS: Development of a multicolor FISH procedure allowed the comparison of transcript gene expression domains in the embryonic zebrafish brain to a cellular level. Likewise, this method should be applicable for mRNA colocalization studies in any other tissues or organs. The key optimization steps of this method for use in zebrafish can easily be implemented in whole-mount FISH protocols of other organisms. Moreover, our improved reaction conditions may be beneficial in any application that relies on a TSA/POD-mediated detection system, such as immunocytochemical or immunohistochemical methods. BioMed Central 2011-04-05 /pmc/articles/PMC3088888/ /pubmed/21466670 http://dx.doi.org/10.1186/1749-8104-6-10 Text en Copyright ©2011 Lauter et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology
Lauter, Gilbert
Söll, Iris
Hauptmann, Giselbert
Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain
title Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain
title_full Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain
title_fullStr Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain
title_full_unstemmed Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain
title_short Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain
title_sort multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088888/
https://www.ncbi.nlm.nih.gov/pubmed/21466670
http://dx.doi.org/10.1186/1749-8104-6-10
work_keys_str_mv AT lautergilbert multicolorfluorescentinsituhybridizationtodefineabuttingandoverlappinggeneexpressionintheembryoniczebrafishbrain
AT solliris multicolorfluorescentinsituhybridizationtodefineabuttingandoverlappinggeneexpressionintheembryoniczebrafishbrain
AT hauptmanngiselbert multicolorfluorescentinsituhybridizationtodefineabuttingandoverlappinggeneexpressionintheembryoniczebrafishbrain