Cargando…
Ranking causal variants and associated regions in genome-wide association studies by the support vector machine and random forest
We study the number of causal variants and associated regions identified by top SNPs in rankings given by the popular 1 df chi-squared statistic, support vector machine (SVM) and the random forest (RF) on simulated and real data. If we apply the SVM and RF to the top 2r chi-square-ranked SNPs, where...
Autores principales: | Roshan, Usman, Chikkagoudar, Satish, Wei, Zhi, Wang, Kai, Hakonarson, Hakon |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089490/ https://www.ncbi.nlm.nih.gov/pubmed/21317188 http://dx.doi.org/10.1093/nar/gkr064 |
Ejemplares similares
-
ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
por: Wang, Kai, et al.
Publicado: (2010) -
SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data
por: Wei, Zhi, et al.
Publicado: (2011) -
ParseCNV integrative copy number variation association software with quality tracking
por: Glessner, Joseph T., et al.
Publicado: (2013) -
Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines
por: Fernández, Michael, et al.
Publicado: (2012) -
Rank–rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures
por: Plaisier, Seema B., et al.
Publicado: (2010)