Cargando…
Meta analysis of Chronic Fatigue Syndrome through integration of clinical, gene expression, SNP and proteomic data
We start by constructing gene-gene association networks based on about 300 genes whose expression values vary between the groups of CFS patients (plus control). Connected components (modules) from these networks are further inspected for their predictive ability for symptom severity, genotypes of tw...
Autores principales: | Pihur, Vasyl, Datta, Somnath, Datta, Susmita |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089886/ https://www.ncbi.nlm.nih.gov/pubmed/21584188 |
Ejemplares similares
-
Incorporation of biological knowledge into distance for clustering genes
por: Boratyn, Grzegorz M, et al.
Publicado: (2007) -
Proteomic signature of periodontal disease in pregnancy: Predictive validity for adverse outcomes
por: Ramchandani, Manisha, et al.
Publicado: (2011) -
An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data
por: Datta, Susmita, et al.
Publicado: (2010) -
Integrative analysis of the mouse embryonic transcriptome
por: Singh, Amar V, et al.
Publicado: (2007) -
Exploratory Methods for Checking Quality of Microarray Data
por: Lee, Eun-Kyung, et al.
Publicado: (2007)