Cargando…
Pharmacological regulation of neutrophil activity and apoptosis: Contribution to new strategy for modulation of inflammatory processes
Novel strategies of antiinflammatory therapy are based upon pharmacological agents capable to enhance the resolution – i.e. the termination of the beneficial inflammation before it may turn into an adverse chronic stage. In contrast to the current therapy, which antagonises the formation of proinfla...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Slovak Toxicology Society SETOX
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090048/ https://www.ncbi.nlm.nih.gov/pubmed/21577278 http://dx.doi.org/10.2478/v10102-011-0003-0 |
Sumario: | Novel strategies of antiinflammatory therapy are based upon pharmacological agents capable to enhance the resolution – i.e. the termination of the beneficial inflammation before it may turn into an adverse chronic stage. In contrast to the current therapy, which antagonises the formation of proinflammatory mediators, the “proresolving” therapy promotes natural antiinflammatory processes. It is likely that several drugs and phytochemicals would act in this way, but this point has not been investigated and thus might be totally overlooked. In this paper, effects of curcumin (diferuloylmethane) were analysed, considering the ability of this natural compound to affect resolution of inflammation through modulation of its important inputs – activity and apoptosis of neutrophils. The presented data indicate that, besides its well-known ability to suppress mechanisms engaged at the onset and progression of inflammation, curcumin could support resolution of inflammation through decreased activity and enhanced apoptosis of neutrophils. This substance decreased the formation of oxidants in neutrophils, both under in vitro conditions and after oral administration to arthritic rats. Moreover, curcumin accelerated spontaneous apoptosis of neutrophils, as indicated by increased externalisation of phosphatidylserine, by intercalation of propidium iodide and by enhanced activity of the executioner caspase-3. |
---|