Cargando…

A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy

Gold (Au) nanoshells with solid silica cores have great potential for cancer photothermal therapy. However, this nanostructure cannot carry enough drugs. Here, we report a Au nanoshell with a hollow silica core for drug loading and cancer therapy. The silica shells were synthesized using nanoliposom...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Congyu, Yu, Cong, Chu, Maoquan
Formato: Texto
Lenguaje:English
Publicado: Dove Medical Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090277/
https://www.ncbi.nlm.nih.gov/pubmed/21589648
http://dx.doi.org/10.2147/IJN.S16701
Descripción
Sumario:Gold (Au) nanoshells with solid silica cores have great potential for cancer photothermal therapy. However, this nanostructure cannot carry enough drugs. Here, we report a Au nanoshell with a hollow silica core for drug loading and cancer therapy. The silica shells were synthesized using nanoliposome templates, and then Au nanoshells were grown on the outer surface of the silica shells. Transmission-electron and scanning-electron microscopy showed that the Au nanoshells were successfully fabricated, and that the liposome/SiO(2)/Au core-shell nanocomposites were spherical with a narrow size distribution. Images of several broken spheres, and the fact that hollow templates (liposomes) were used, suggest that the fabricated Au nanoshells were hollow. After doxorubicin (DOX) was incorporated into liposome/SiO(2)/Au, the DOX-loaded Au nanoshells killed cancer cells with high therapeutic efficacy when irradiated with near-infrared light, suggesting that the Au nanoshells delivered both DOX chemotherapy and photothermal therapy with a synergistic effect.