Cargando…
Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells
BACKGROUND: Mesenchymal stem cell transplantation is a promising method in regenerative medicine. Gene-modified mesenchymal stem cells possess superior characteristics of specific tissue differentiation, resistance to apoptosis, and directional migration. Viral vectors have the disadvantages of pote...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090281/ https://www.ncbi.nlm.nih.gov/pubmed/21589652 http://dx.doi.org/10.2147/IJN.S17155 |
_version_ | 1782203127783489536 |
---|---|
author | Chen, Xiao-Ai Zhang, Li-Jun He, Zhi-Jie Wang, Wei-Wei Xu, Bo Zhong, Qian Shuai, Xin-Tao Yang, Li-Qun Deng, Yu-Bin |
author_facet | Chen, Xiao-Ai Zhang, Li-Jun He, Zhi-Jie Wang, Wei-Wei Xu, Bo Zhong, Qian Shuai, Xin-Tao Yang, Li-Qun Deng, Yu-Bin |
author_sort | Chen, Xiao-Ai |
collection | PubMed |
description | BACKGROUND: Mesenchymal stem cell transplantation is a promising method in regenerative medicine. Gene-modified mesenchymal stem cells possess superior characteristics of specific tissue differentiation, resistance to apoptosis, and directional migration. Viral vectors have the disadvantages of potential immunogenicity, carcinogenicity, and complicated synthetic procedures. Polyethylene glycol-grafted polyethylenimine (PEG-PEI) holds promise in gene delivery because of easy preparation and potentially targeting modification. METHODS: A PEG8k-PEI25k graft copolymer was synthesized. Agarose gel retardation assay and dynamic light scattering were used to determine the properties of the nanoparticles. MTT reduction, wound and healing, and differentiation assays were used to test the cytobiological characteristics of rat mesenchymal stem cells, fluorescence microscopy and flow cytometry were used to determine transfection efficiency, and atomic force microscopy was used to evaluate the interaction between PEG-PEI/plasmid nanoparticles and mesenchymal stem cells. RESULTS: After incubation with the copolymer, the bionomics of mesenchymal stem cells showed no significant change. The mesenchymal stem cells still maintained high viability, resettled the wound area, and differentiated into adipocytes and osteoblasts. The PEG-PEI completely packed plasmid and condensed plasmid into stable nanoparticles of 100–150 nm diameter. After optimizing the N/P ratio, the PEG-PEI/plasmid microcapsules delivered plasmid into mesenchymal stem cells and obtained an optimum transfection efficiency of 15%–21%, which was higher than for cationic liposomes. CONCLUSION: These data indicate that PEG-PEI is a valid gene delivery agent and has better transfection efficiency than cationic liposomes in mesenchymal stem cells. |
format | Text |
id | pubmed-3090281 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-30902812011-05-17 Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells Chen, Xiao-Ai Zhang, Li-Jun He, Zhi-Jie Wang, Wei-Wei Xu, Bo Zhong, Qian Shuai, Xin-Tao Yang, Li-Qun Deng, Yu-Bin Int J Nanomedicine Original Research BACKGROUND: Mesenchymal stem cell transplantation is a promising method in regenerative medicine. Gene-modified mesenchymal stem cells possess superior characteristics of specific tissue differentiation, resistance to apoptosis, and directional migration. Viral vectors have the disadvantages of potential immunogenicity, carcinogenicity, and complicated synthetic procedures. Polyethylene glycol-grafted polyethylenimine (PEG-PEI) holds promise in gene delivery because of easy preparation and potentially targeting modification. METHODS: A PEG8k-PEI25k graft copolymer was synthesized. Agarose gel retardation assay and dynamic light scattering were used to determine the properties of the nanoparticles. MTT reduction, wound and healing, and differentiation assays were used to test the cytobiological characteristics of rat mesenchymal stem cells, fluorescence microscopy and flow cytometry were used to determine transfection efficiency, and atomic force microscopy was used to evaluate the interaction between PEG-PEI/plasmid nanoparticles and mesenchymal stem cells. RESULTS: After incubation with the copolymer, the bionomics of mesenchymal stem cells showed no significant change. The mesenchymal stem cells still maintained high viability, resettled the wound area, and differentiated into adipocytes and osteoblasts. The PEG-PEI completely packed plasmid and condensed plasmid into stable nanoparticles of 100–150 nm diameter. After optimizing the N/P ratio, the PEG-PEI/plasmid microcapsules delivered plasmid into mesenchymal stem cells and obtained an optimum transfection efficiency of 15%–21%, which was higher than for cationic liposomes. CONCLUSION: These data indicate that PEG-PEI is a valid gene delivery agent and has better transfection efficiency than cationic liposomes in mesenchymal stem cells. Dove Medical Press 2011 2011-04-21 /pmc/articles/PMC3090281/ /pubmed/21589652 http://dx.doi.org/10.2147/IJN.S17155 Text en © 2011 Chen et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Chen, Xiao-Ai Zhang, Li-Jun He, Zhi-Jie Wang, Wei-Wei Xu, Bo Zhong, Qian Shuai, Xin-Tao Yang, Li-Qun Deng, Yu-Bin Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells |
title | Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells |
title_full | Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells |
title_fullStr | Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells |
title_full_unstemmed | Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells |
title_short | Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells |
title_sort | plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090281/ https://www.ncbi.nlm.nih.gov/pubmed/21589652 http://dx.doi.org/10.2147/IJN.S17155 |
work_keys_str_mv | AT chenxiaoai plasmidencapsulatedpolyethyleneglycolgraftedpolyethyleniminenanoparticlesforgenedeliveryintoratmesenchymalstemcells AT zhanglijun plasmidencapsulatedpolyethyleneglycolgraftedpolyethyleniminenanoparticlesforgenedeliveryintoratmesenchymalstemcells AT hezhijie plasmidencapsulatedpolyethyleneglycolgraftedpolyethyleniminenanoparticlesforgenedeliveryintoratmesenchymalstemcells AT wangweiwei plasmidencapsulatedpolyethyleneglycolgraftedpolyethyleniminenanoparticlesforgenedeliveryintoratmesenchymalstemcells AT xubo plasmidencapsulatedpolyethyleneglycolgraftedpolyethyleniminenanoparticlesforgenedeliveryintoratmesenchymalstemcells AT zhongqian plasmidencapsulatedpolyethyleneglycolgraftedpolyethyleniminenanoparticlesforgenedeliveryintoratmesenchymalstemcells AT shuaixintao plasmidencapsulatedpolyethyleneglycolgraftedpolyethyleniminenanoparticlesforgenedeliveryintoratmesenchymalstemcells AT yangliqun plasmidencapsulatedpolyethyleneglycolgraftedpolyethyleniminenanoparticlesforgenedeliveryintoratmesenchymalstemcells AT dengyubin plasmidencapsulatedpolyethyleneglycolgraftedpolyethyleniminenanoparticlesforgenedeliveryintoratmesenchymalstemcells |