Cargando…
Optimally splitting cases for training and testing high dimensional classifiers
BACKGROUND: We consider the problem of designing a study to develop a predictive classifier from high dimensional data. A common study design is to split the sample into a training set and an independent test set, where the former is used to develop the classifier and the latter to evaluate its perf...
Autores principales: | Dobbin, Kevin K, Simon, Richard M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090739/ https://www.ncbi.nlm.nih.gov/pubmed/21477282 http://dx.doi.org/10.1186/1755-8794-4-31 |
Ejemplares similares
-
To aggregate or not to aggregate high-dimensional classifiers
por: Xu, Cheng-Jian, et al.
Publicado: (2011) -
Classifying high-dimensional phenotypes with ensemble learning
por: Devine, Jay, et al.
Publicado: (2023) -
To split or to lump? Classifying the central disorders of hypersomnolence
por: Fronczek, Rolf, et al.
Publicado: (2020) -
Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction
por: Boulesteix, Anne-Laure, et al.
Publicado: (2009) -
Basket Classifier: Fast and Optimal Restructuring of theClassifier for Differing Train and Target Samples
por: Philippov, Anton
Publicado: (2021)