Cargando…
Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development
BACKGROUND: The gene networks underlying closure of the optic fissure during vertebrate eye development are not well-understood. We use a novel clustering method based on nonlinear dimension reduction with data labeling to analyze microarray data from laser capture microdissected (LCM) cells at the...
Autores principales: | Ehler, Martin, Rajapakse, Vinodh N, Zeeberg, Barry R, Brooks, Brian P, Brown, Jacob, Czaja, Wojciech, Bonner, Robert F |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090761/ https://www.ncbi.nlm.nih.gov/pubmed/21554761 http://dx.doi.org/10.1186/1753-6561-5-S2-S3 |
Ejemplares similares
-
RedundancyMiner: De-replication of redundant GO categories in microarray and proteomics analysis
por: Zeeberg, Barry R, et al.
Publicado: (2011) -
Reproducible Clusters from Microarray Research: Whither?
por: Garge, Nikhil R, et al.
Publicado: (2005) -
Mixture modeling of microarray gene expression data
por: Yang, Yang, et al.
Publicado: (2007) -
Metric for Measuring the Effectiveness of Clustering of DNA Microarray Expression
por: Loganantharaj, Raja, et al.
Publicado: (2006) -
Gene network modular-based classification of microarray samples
por: Hu, Pingzhao, et al.
Publicado: (2012)