Cargando…
A Comparison of Methods for Data-Driven Cancer Outlier Discovery, and An Application Scheme to Semisupervised Predictive Biomarker Discovery
A core component in translational cancer research is biomarker discovery using gene expression profiling for clinical tumors. This is often based on cell line experiments; one population is sampled for inference in another. We disclose a semisupervised workflow focusing on binary (switch-like, bimod...
Autores principales: | Karrila, Seppo, Lee, Julian Hock Ean, Tucker-Kellogg, Greg |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091411/ https://www.ncbi.nlm.nih.gov/pubmed/21584264 http://dx.doi.org/10.4137/CIN.S6868 |
Ejemplares similares
-
Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications
por: Qian, Guoqi, et al.
Publicado: (2016) -
A Semisupervised Learning Scheme with Self-Paced Learning for Classifying Breast Cancer Histopathological Images
por: Asare, Sarpong Kwadwo, et al.
Publicado: (2020) -
Augmented Intelligence for Clinical Discovery in Hypertensive Disorders of Pregnancy Using Outlier Analysis
por: Janoudi, Ghayath, et al.
Publicado: (2023) -
Data-Driven Discovery of Immune Contexture Biomarkers
por: Schwen, Lars Ole, et al.
Publicado: (2018) -
Microhydrodynamics: principles and selected applications
por: Kim, Sangtae, et al.
Publicado: (1991)