Cargando…
Application of Support Vector Machine for Prediction of Medication Adherence in Heart Failure Patients
OBJECTIVES: Heart failure (HF) is a progressive syndrome that marks the end-stage of heart diseases, and it has a high mortality rate and significant cost burden. In particular, non-adherence of medication in HF patients may result in serious consequences such as hospital readmission and death. This...
Autores principales: | Son, Youn-Jung, Kim, Hong-Gee, Kim, Eung-Hee, Choi, Sangsup, Lee, Soo-Kyoung |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092139/ https://www.ncbi.nlm.nih.gov/pubmed/21818444 http://dx.doi.org/10.4258/hir.2010.16.4.253 |
Ejemplares similares
-
Predictors of Medication Adherence in Elderly Patients with Chronic Diseases Using Support Vector Machine Models
por: Lee, Soo Kyoung, et al.
Publicado: (2013) -
The roles of health literacy and social support in improving adherence to self‐care behaviours among older adults with heart failure
por: Jo, Ahra, et al.
Publicado: (2020) -
Evaluation of Adherence to Guideline for Heart Failure with Reduced Ejection Fraction in Heart Failure with Preserved Ejection Fraction and with or without Atrial Fibrillation
por: Ahn, Min-Soo, et al.
Publicado: (2021) -
The role of patient activation in self‐care behaviours of Korean older adults with heart failure
por: Son, Youn‐Jung, et al.
Publicado: (2023) -
Support Vector Machines
por: Deng, Naiyang
Publicado: (2012)