Cargando…
An Imperfect Dopaminergic Error Signal Can Drive Temporal-Difference Learning
An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD) learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference...
Autores principales: | Potjans, Wiebke, Diesmann, Markus, Morrison, Abigail |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093351/ https://www.ncbi.nlm.nih.gov/pubmed/21589888 http://dx.doi.org/10.1371/journal.pcbi.1001133 |
Ejemplares similares
-
Enabling Functional Neural Circuit Simulations with Distributed Computing of Neuromodulated Plasticity
por: Potjans, Wiebke, et al.
Publicado: (2010) -
Is a 4-Bit Synaptic Weight Resolution Enough? – Constraints on Enabling Spike-Timing Dependent Plasticity in Neuromorphic Hardware
por: Pfeil, Thomas, et al.
Publicado: (2012) -
Robustness vs. flexibility: how do external inputs shape the activity in a data-based layered cortical network model?
por: Potjans, Tobias C, et al.
Publicado: (2011) -
The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model
por: Potjans, Tobias C., et al.
Publicado: (2014) -
Meeting the Memory Challenges of Brain-Scale Network Simulation
por: Kunkel, Susanne, et al.
Publicado: (2012)