Cargando…

The timing of binding and segregation of two compound aftereffects

Temporal information in a scene is thought to be an important cue for visual grouping of local image features into a single object. The majority of studies on this topic have attempted to determine the conditions that facilitate segregation of a figure from a cluttered background. Here we examine th...

Descripción completa

Detalles Bibliográficos
Autores principales: McGovern, David P., Hancock, Sarah, Peirce, Jonathan W.
Formato: Texto
Lenguaje:English
Publicado: Elsevier Science Ltd 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093619/
https://www.ncbi.nlm.nih.gov/pubmed/21376074
http://dx.doi.org/10.1016/j.visres.2011.02.017
Descripción
Sumario:Temporal information in a scene is thought to be an important cue for visual grouping of local image features into a single object. The majority of studies on this topic have attempted to determine the conditions that facilitate segregation of a figure from a cluttered background. Here we examine the temporal characteristics of two aftereffects that appear to have roles in visual integration: the curvature aftereffect (CAE; Hancock & Peirce, 2008) and plaid-selective contrast adaptation (Peirce & Taylor, 2006). Both aftereffects used a “compound adaptation” paradigm measuring adaptation to a compound stimulus that cannot be explained by adaptation to its components presented in isolation. The temporal tuning characteristics of the two aftereffects differed in three distinct ways. First, plaid-selective adaptation was very sensitive to temporal phase asynchronies, while the CAE was not. Second, while both aftereffects showed integration of alternating components above 4 Hz, for plaids the overall magnitude of adaptation was less than to synchronous stimuli and was eliminated at the highest frequencies. Finally, plaid-selective adaptation demonstrated a low-pass dependency for temporal flicker frequency of synchronous gratings, whereas the CAE did not. Overall, these results suggest that at least two different mechanisms are involved in the binding/segregation of local signals into compound patterns: one with high temporal resolution that allows rapid parsing of plaid patterns into their components and one with a coarser temporal sensitivity that mediates the CAE.