Cargando…
Dopaminergic Balance between Reward Maximization and Policy Complexity
Previous reinforcement-learning models of the basal ganglia network have highlighted the role of dopamine in encoding the mismatch between prediction and reality. Far less attention has been paid to the computational goals and algorithms of the main-axis (actor). Here, we construct a top-down model...
Autores principales: | Parush, Naama, Tishby, Naftali, Bergman, Hagai |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093748/ https://www.ncbi.nlm.nih.gov/pubmed/21603228 http://dx.doi.org/10.3389/fnsys.2011.00022 |
Ejemplares similares
-
Dopaminergic and opioidergic regulation during anticipation and consumption of social and nonsocial rewards
por: Korb, Sebastian, et al.
Publicado: (2020) -
Leptin and insulin signaling in dopaminergic neurons: relationship between energy balance and reward system
por: Khanh, Doan V., et al.
Publicado: (2014) -
Balancing Risks and Rewards: The Logic of Violence
por: Broom, Mark
Publicado: (2009) -
The information theory of Deep Learning
por: Tishby, Naftali
Publicado: (2019) -
On the physiology of jouissance: interpreting the mesolimbic dopaminergic reward functions from a psychoanalytic perspective
por: Bazan, Ariane, et al.
Publicado: (2013)