Cargando…
A Hyper-Solution Framework for SVM Classification: Application for Predicting Destabilizations in Chronic Heart Failure Patients
Support Vector Machines (SVMs) represent a powerful learning paradigm able to provide accurate and reliable decision functions in several application fields. In particular, they are really attractive for application in medical domain, where often a lack of knowledge exists. Kernel trick, on which SV...
Autores principales: | Candelieri, Antonio, Conforti, Domenico |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Bentham Open
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095094/ https://www.ncbi.nlm.nih.gov/pubmed/21589851 http://dx.doi.org/10.2174/1874431101004010136 |
Ejemplares similares
-
CNN and SVM-Based Models for the Detection of Heart Failure Using Electrocardiogram Signals
por: Botros, Jad, et al.
Publicado: (2022) -
An SVM-Based Solution for Fault Detection in Wind Turbines
por: Santos, Pedro, et al.
Publicado: (2015) -
Classification of arrayCGH data using fused SVM
por: Rapaport, Franck, et al.
Publicado: (2008) -
Incremental Learning with SVM for Multimodal Classification of Prostatic Adenocarcinoma
por: García Molina, José Fernando, et al.
Publicado: (2014) -
Alignment-free supervised classification of metagenomes by recursive SVM
por: Cui, Hongfei, et al.
Publicado: (2013)