Cargando…
Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants
BACKGROUND: Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have establ...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095299/ https://www.ncbi.nlm.nih.gov/pubmed/20696066 http://dx.doi.org/10.1186/1471-2229-10-165 |
_version_ | 1782203624715190272 |
---|---|
author | Dan, Yinghui Baxter, Aaron Zhang, Song Pantazis, Christopher J Veilleux, Richard E |
author_facet | Dan, Yinghui Baxter, Aaron Zhang, Song Pantazis, Christopher J Veilleux, Richard E |
author_sort | Dan, Yinghui |
collection | PubMed |
description | BACKGROUND: Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. RESULTS: In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T(1 )segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. CONCLUSION: We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as explants. This transformation system has the advantages of 1) efficient, simple and rapid regeneration and transformation (with no need for sterilization or a greenhouse to grow stock plants), 2) flexibility (available all the time) for in vitro manipulation, 3) uniform and desirable green tissue explants for both nuclear and plastid transformation using Agrobacterium-mediated and biolistics methods, 4) no somaclonal variation and 5) resolution of necrosis of Agrobacterium-inoculated tissues. |
format | Text |
id | pubmed-3095299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30952992011-05-17 Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants Dan, Yinghui Baxter, Aaron Zhang, Song Pantazis, Christopher J Veilleux, Richard E BMC Plant Biol Methodology Article BACKGROUND: Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. RESULTS: In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T(1 )segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. CONCLUSION: We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as explants. This transformation system has the advantages of 1) efficient, simple and rapid regeneration and transformation (with no need for sterilization or a greenhouse to grow stock plants), 2) flexibility (available all the time) for in vitro manipulation, 3) uniform and desirable green tissue explants for both nuclear and plastid transformation using Agrobacterium-mediated and biolistics methods, 4) no somaclonal variation and 5) resolution of necrosis of Agrobacterium-inoculated tissues. BioMed Central 2010-08-09 /pmc/articles/PMC3095299/ /pubmed/20696066 http://dx.doi.org/10.1186/1471-2229-10-165 Text en Copyright ©2010 Dan et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Dan, Yinghui Baxter, Aaron Zhang, Song Pantazis, Christopher J Veilleux, Richard E Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants |
title | Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants |
title_full | Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants |
title_fullStr | Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants |
title_full_unstemmed | Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants |
title_short | Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants |
title_sort | development of efficient plant regeneration and transformation system for impatiens using agrobacterium tumefaciens and multiple bud cultures as explants |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095299/ https://www.ncbi.nlm.nih.gov/pubmed/20696066 http://dx.doi.org/10.1186/1471-2229-10-165 |
work_keys_str_mv | AT danyinghui developmentofefficientplantregenerationandtransformationsystemforimpatiensusingagrobacteriumtumefaciensandmultiplebudculturesasexplants AT baxteraaron developmentofefficientplantregenerationandtransformationsystemforimpatiensusingagrobacteriumtumefaciensandmultiplebudculturesasexplants AT zhangsong developmentofefficientplantregenerationandtransformationsystemforimpatiensusingagrobacteriumtumefaciensandmultiplebudculturesasexplants AT pantazischristopherj developmentofefficientplantregenerationandtransformationsystemforimpatiensusingagrobacteriumtumefaciensandmultiplebudculturesasexplants AT veilleuxricharde developmentofefficientplantregenerationandtransformationsystemforimpatiensusingagrobacteriumtumefaciensandmultiplebudculturesasexplants |