Cargando…

Applicability of Generic Assays Based on Liquid Chromatography–Electrospray Mass Spectrometry to Study in vitro Metabolism of 55 Structurally Diverse Compounds

Liquid chromatography–mass spectrometry (LC–MS) with generic gradient elution for a large number of chemically different compounds is a common approach in drug development, used to acquire a large amount of data in a short time frame for drug candidates. The analysis with non-optimized parameters ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Rousu, Timo, Hokkanen, Juho, Pelkonen, Olavi R., Tolonen, Ari
Formato: Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095372/
https://www.ncbi.nlm.nih.gov/pubmed/21607061
http://dx.doi.org/10.3389/fphar.2010.00010
_version_ 1782203641087655936
author Rousu, Timo
Hokkanen, Juho
Pelkonen, Olavi R.
Tolonen, Ari
author_facet Rousu, Timo
Hokkanen, Juho
Pelkonen, Olavi R.
Tolonen, Ari
author_sort Rousu, Timo
collection PubMed
description Liquid chromatography–mass spectrometry (LC–MS) with generic gradient elution for a large number of chemically different compounds is a common approach in drug development, used to acquire a large amount of data in a short time frame for drug candidates. The analysis with non-optimized parameters however may lead to a poor method performance for many compounds, and contains a risk of losing important information. Here, generic electrospray time of flight (ESI-TOF) MS methods in various pH conditions were tested for 55 chemically diverse compounds (10 acids, 25 bases, 17 neutrals, and 3 amphoterics), aiming to find best analytical conditions for each compound, for studies of in vitro metabolic properties in liver preparations. The effect of eluent pH and elution gradient strength on chromatographic performance and electrospray MS ionization efficiency were examined for each compound. The data are evaluated how well the best generic approach could cover the analysis of test compounds and how many compounds would still need completely different analytical conditions after that. Aqueous mobile phase consisting of 0.05% acetic acid and 5 mM ammonium acetate (pH 4.4) showed the best general suitability for the analyses, showing adequate performance for metabolite profiling for 41 out of 55 compounds either in positive or negative ion mode. In positive ion mode, the main limitation of performance in various pH conditions was generally not the lack of ionization, but rather the poor chromatographic performance (inadequate retention or poor peak shape), suggesting that more emphasis should be put in finding conditions providing best chromatographic performance, rather than highest ionization properties. However, a single generic approach for a large number of different compounds is not likely to produce good results for all compounds. Preferably, at least two or three different conditions are needed for the coverage of a larger number of structurally diverse compounds.
format Text
id pubmed-3095372
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Frontiers Research Foundation
record_format MEDLINE/PubMed
spelling pubmed-30953722011-05-23 Applicability of Generic Assays Based on Liquid Chromatography–Electrospray Mass Spectrometry to Study in vitro Metabolism of 55 Structurally Diverse Compounds Rousu, Timo Hokkanen, Juho Pelkonen, Olavi R. Tolonen, Ari Front Pharmacol Pharmacology Liquid chromatography–mass spectrometry (LC–MS) with generic gradient elution for a large number of chemically different compounds is a common approach in drug development, used to acquire a large amount of data in a short time frame for drug candidates. The analysis with non-optimized parameters however may lead to a poor method performance for many compounds, and contains a risk of losing important information. Here, generic electrospray time of flight (ESI-TOF) MS methods in various pH conditions were tested for 55 chemically diverse compounds (10 acids, 25 bases, 17 neutrals, and 3 amphoterics), aiming to find best analytical conditions for each compound, for studies of in vitro metabolic properties in liver preparations. The effect of eluent pH and elution gradient strength on chromatographic performance and electrospray MS ionization efficiency were examined for each compound. The data are evaluated how well the best generic approach could cover the analysis of test compounds and how many compounds would still need completely different analytical conditions after that. Aqueous mobile phase consisting of 0.05% acetic acid and 5 mM ammonium acetate (pH 4.4) showed the best general suitability for the analyses, showing adequate performance for metabolite profiling for 41 out of 55 compounds either in positive or negative ion mode. In positive ion mode, the main limitation of performance in various pH conditions was generally not the lack of ionization, but rather the poor chromatographic performance (inadequate retention or poor peak shape), suggesting that more emphasis should be put in finding conditions providing best chromatographic performance, rather than highest ionization properties. However, a single generic approach for a large number of different compounds is not likely to produce good results for all compounds. Preferably, at least two or three different conditions are needed for the coverage of a larger number of structurally diverse compounds. Frontiers Research Foundation 2010-08-06 /pmc/articles/PMC3095372/ /pubmed/21607061 http://dx.doi.org/10.3389/fphar.2010.00010 Text en Copyright © 2010 Rousu, Hokkanen, Pelkonen and Tolonen. http://www.frontiersin.org/licenseagreement This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.
spellingShingle Pharmacology
Rousu, Timo
Hokkanen, Juho
Pelkonen, Olavi R.
Tolonen, Ari
Applicability of Generic Assays Based on Liquid Chromatography–Electrospray Mass Spectrometry to Study in vitro Metabolism of 55 Structurally Diverse Compounds
title Applicability of Generic Assays Based on Liquid Chromatography–Electrospray Mass Spectrometry to Study in vitro Metabolism of 55 Structurally Diverse Compounds
title_full Applicability of Generic Assays Based on Liquid Chromatography–Electrospray Mass Spectrometry to Study in vitro Metabolism of 55 Structurally Diverse Compounds
title_fullStr Applicability of Generic Assays Based on Liquid Chromatography–Electrospray Mass Spectrometry to Study in vitro Metabolism of 55 Structurally Diverse Compounds
title_full_unstemmed Applicability of Generic Assays Based on Liquid Chromatography–Electrospray Mass Spectrometry to Study in vitro Metabolism of 55 Structurally Diverse Compounds
title_short Applicability of Generic Assays Based on Liquid Chromatography–Electrospray Mass Spectrometry to Study in vitro Metabolism of 55 Structurally Diverse Compounds
title_sort applicability of generic assays based on liquid chromatography–electrospray mass spectrometry to study in vitro metabolism of 55 structurally diverse compounds
topic Pharmacology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095372/
https://www.ncbi.nlm.nih.gov/pubmed/21607061
http://dx.doi.org/10.3389/fphar.2010.00010
work_keys_str_mv AT rousutimo applicabilityofgenericassaysbasedonliquidchromatographyelectrospraymassspectrometrytostudyinvitrometabolismof55structurallydiversecompounds
AT hokkanenjuho applicabilityofgenericassaysbasedonliquidchromatographyelectrospraymassspectrometrytostudyinvitrometabolismof55structurallydiversecompounds
AT pelkonenolavir applicabilityofgenericassaysbasedonliquidchromatographyelectrospraymassspectrometrytostudyinvitrometabolismof55structurallydiversecompounds
AT tolonenari applicabilityofgenericassaysbasedonliquidchromatographyelectrospraymassspectrometrytostudyinvitrometabolismof55structurallydiversecompounds