Cargando…
An Entropy Model for Artificial Grammar Learning
A model is proposed to characterize the type of knowledge acquired in artificial grammar learning (AGL). In particular, Shannon entropy is employed to compute the complexity of different test items in an AGL task, relative to the training items. According to this model, the more predictable a test i...
Autor principal: | Pothos, Emmanuel M. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095384/ https://www.ncbi.nlm.nih.gov/pubmed/21607072 http://dx.doi.org/10.3389/fpsyg.2010.00016 |
Ejemplares similares
-
Developmental Constraints on Learning Artificial Grammars with Fixed, Flexible and Free Word Order
por: Nowak, Iga, et al.
Publicado: (2017) -
Artificial Grammar Learning Capabilities in an Abstract Visual Task Match Requirements for Linguistic Syntax
por: Westphal-Fitch, Gesche, et al.
Publicado: (2018) -
Commentary: Developmental Constraints on Learning Artificial Grammars with Fixed, Flexible, and Free Word Order
por: De Santo, Aniello
Publicado: (2018) -
Learning simple and complex artificial grammars in the presence of a semantic reference field: effects on performance and awareness
por: Van den Bos, Esther, et al.
Publicado: (2015) -
Discovery of a Recursive Principle: An Artificial Grammar Investigation of Human Learning of a Counting Recursion Language
por: Cho, Pyeong Whan, et al.
Publicado: (2016)