Cargando…
Mechanisms That Regulate Peripheral Immune Responses to Control Organ-Specific Autoimmunity
The immune system must balance the need to maintain a diverse repertoire of lymphocytes to be able to fight infection with the need to maintain tolerance to self-proteins. The immune system places strict regulation over the ability of T cells to produce the major T cell growth factor interleukin 2 a...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095406/ https://www.ncbi.nlm.nih.gov/pubmed/21603204 http://dx.doi.org/10.1155/2011/294968 |
Sumario: | The immune system must balance the need to maintain a diverse repertoire of lymphocytes to be able to fight infection with the need to maintain tolerance to self-proteins. The immune system places strict regulation over the ability of T cells to produce the major T cell growth factor interleukin 2 as this cytokine can influence a variety of immune outcomes. T cells require the delivery of two signals, one through the antigen receptor and a second through the costimulatory receptor CD28. The immune system uses a variety of E3 ubiquitin ligases to target signaling proteins that function downstream of the TCR and CD28 receptors. Mutations in these E3 ligases can lead to a breakdown in immune tolerance and development of autoimmunity. This paper will examine the role of a range of E3 ubiquitin ligases and signaling pathways that influence the development of T-cell effector responses and the development of organ-specific autoimmune diseases such as type 1 diabetes. |
---|