Cargando…
Lipopolysaccharide Animal Models for Parkinson's Disease
Lipopolysaccharide (LPS), an endotoxin from Gram-negative bacteria, acts as a potent stimulator of microglia and has been used to study the inflammatory process in the pathogenesis of Parkinson's disease (PD) and anti-inflammatory therapy for PD treatment. Here, we review the growing body of li...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
SAGE-Hindawi Access to Research
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096023/ https://www.ncbi.nlm.nih.gov/pubmed/21603177 http://dx.doi.org/10.4061/2011/327089 |
_version_ | 1782203702239559680 |
---|---|
author | Liu, Mei Bing, Guoying |
author_facet | Liu, Mei Bing, Guoying |
author_sort | Liu, Mei |
collection | PubMed |
description | Lipopolysaccharide (LPS), an endotoxin from Gram-negative bacteria, acts as a potent stimulator of microglia and has been used to study the inflammatory process in the pathogenesis of Parkinson's disease (PD) and anti-inflammatory therapy for PD treatment. Here, we review the growing body of literature on both in vitro and in vivo LPS PD models. Primary cell cultures from mesencephalic tissue were exposed to LPS in vitro; LPS was stereotaxically injected into the substantia nigra, striatum, or globus pallidus of brain or injected into the peritoneal cavity of the animal in vivo. In conclusion, the LPS PD models are summarized as (1) local and direct LPS treatment and (2) systemic LPS treatment. Mechanisms underlying the PD models are investigated and indicated that LPS induces microglial activation to release a variety of neurotoxic factors, and damaged neurons may trigger reactive microgliosis, which lead to progressive dopaminergic neurodegeneration. |
format | Text |
id | pubmed-3096023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | SAGE-Hindawi Access to Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-30960232011-05-20 Lipopolysaccharide Animal Models for Parkinson's Disease Liu, Mei Bing, Guoying Parkinsons Dis Review Article Lipopolysaccharide (LPS), an endotoxin from Gram-negative bacteria, acts as a potent stimulator of microglia and has been used to study the inflammatory process in the pathogenesis of Parkinson's disease (PD) and anti-inflammatory therapy for PD treatment. Here, we review the growing body of literature on both in vitro and in vivo LPS PD models. Primary cell cultures from mesencephalic tissue were exposed to LPS in vitro; LPS was stereotaxically injected into the substantia nigra, striatum, or globus pallidus of brain or injected into the peritoneal cavity of the animal in vivo. In conclusion, the LPS PD models are summarized as (1) local and direct LPS treatment and (2) systemic LPS treatment. Mechanisms underlying the PD models are investigated and indicated that LPS induces microglial activation to release a variety of neurotoxic factors, and damaged neurons may trigger reactive microgliosis, which lead to progressive dopaminergic neurodegeneration. SAGE-Hindawi Access to Research 2011-04-27 /pmc/articles/PMC3096023/ /pubmed/21603177 http://dx.doi.org/10.4061/2011/327089 Text en Copyright © 2011 M. Liu and G. Bing. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Liu, Mei Bing, Guoying Lipopolysaccharide Animal Models for Parkinson's Disease |
title | Lipopolysaccharide Animal Models for Parkinson's Disease |
title_full | Lipopolysaccharide Animal Models for Parkinson's Disease |
title_fullStr | Lipopolysaccharide Animal Models for Parkinson's Disease |
title_full_unstemmed | Lipopolysaccharide Animal Models for Parkinson's Disease |
title_short | Lipopolysaccharide Animal Models for Parkinson's Disease |
title_sort | lipopolysaccharide animal models for parkinson's disease |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096023/ https://www.ncbi.nlm.nih.gov/pubmed/21603177 http://dx.doi.org/10.4061/2011/327089 |
work_keys_str_mv | AT liumei lipopolysaccharideanimalmodelsforparkinsonsdisease AT bingguoying lipopolysaccharideanimalmodelsforparkinsonsdisease |