Cargando…
Association Rule Based Similarity Measures for the Clustering of Gene Expression Data
In life threatening diseases, such as cancer, where the effective diagnosis includes annotation, early detection, distinction, and prediction, data mining and statistical approaches offer the promise for precise, accurate, and functionally robust analysis of gene expression data. The computational e...
Autores principales: | Sethi, Prerna, Alagiriswamy, Sathya |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Bentham Open
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096052/ https://www.ncbi.nlm.nih.gov/pubmed/21603179 http://dx.doi.org/10.2174/1874431101004010063 |
Ejemplares similares
-
Clustering of Gene Expression Data Based on Shape Similarity
por: Hestilow, Travis J, et al.
Publicado: (2009) -
Clustering of gene expression data: performance and similarity analysis
por: Yin, Longde, et al.
Publicado: (2006) -
Band-based similarity indices for gene expression classification and clustering
por: Torrente, Aurora
Publicado: (2021) -
Dynamic association rules for gene expression data analysis
por: Chen, Shu-Chuan, et al.
Publicado: (2015) -
Efficient similarity-based data clustering by optimal object to cluster reallocation
por: Rossignol, Mathias, et al.
Publicado: (2018)