Cargando…
A Bayesian Foundation for Individual Learning Under Uncertainty
Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL) and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability an...
Autores principales: | Mathys, Christoph, Daunizeau, Jean, Friston, Karl J., Stephan, Klaas E. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096853/ https://www.ncbi.nlm.nih.gov/pubmed/21629826 http://dx.doi.org/10.3389/fnhum.2011.00039 |
Ejemplares similares
-
Uncertainty in perception and the Hierarchical Gaussian Filter
por: Mathys, Christoph D., et al.
Publicado: (2014) -
Spatial Attention, Precision, and Bayesian Inference: A Study of Saccadic Response Speed
por: Vossel, Simone, et al.
Publicado: (2014) -
Inferring on the Intentions of Others by Hierarchical Bayesian Learning
por: Diaconescu, Andreea O., et al.
Publicado: (2014) -
Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making
por: Daunizeau, Jean, et al.
Publicado: (2010) -
Integrated Bayesian models of learning and decision making for saccadic eye movements()
por: Brodersen, Kay H., et al.
Publicado: (2008)