Cargando…

Diffusion weighted MR imaging in acute vertebral compression fractures: differentiation between malignant and benign causes

AIM: The primary objective of this study was to evaluate the specificity and sensitivity of diffusion weighted MR imaging (DWI) in the differentiation and characterisation between benign and malignant vertebral compression fractures compared with conventional T1 WI, T2 WI and fat suppressed contrast...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhugaloo, AA, Abdullah, BJJ, Siow, YS, Ng, KH
Formato: Texto
Lenguaje:English
Publicado: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Malaysia 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097619/
https://www.ncbi.nlm.nih.gov/pubmed/21614224
http://dx.doi.org/10.2349/biij.2.2.e12
Descripción
Sumario:AIM: The primary objective of this study was to evaluate the specificity and sensitivity of diffusion weighted MR imaging (DWI) in the differentiation and characterisation between benign and malignant vertebral compression fractures compared with conventional T1 WI, T2 WI and fat suppressed contrast enhanced T1 WI in the Malaysian population. MATERIALS AND METHODS: Thirty five patients with 68 vertebral compression fractures were imaged using the conventional T1 WI, T2 WI, fat suppressed contrast enhanced T1-weighted, and steady state free precession diffusion-weighted (SSFP DWI) sequences on a 1.5 T MR scanner. Signal intensities were analysed qualitatively for all the sequences by comparison to adjacent normal marrow. A quantitative assessment of the signal intensity in the SSFP DWI was also performed. RESULTS: T1 WI and T2 WI images are of limited diagnostic value because of the variability in signal intensities. Contrast enhanced images had sensitivity and specificity of 93% and 71%, respectively with a negative predictive value (NPV) of 93%. On diffusion-weighted MR imaging, sensitivity was 87% with specificity of 92%. The positive predicative value (PPV) and NPV were both 90%. The quantitative assessment of ratio revealed a statistical significant difference between the benign (0.96) and the malignant (1.73) group of lesion (Mann-Whitney U-test, p=0.0001). CONCLUSIONS: We found that absence of contrast enhancement has a high NPV (90%) while SSFP DWI has both a high PPV (90%) and high NPV (90%) in detecting malignant vertebral compression fractures. Furthermore, in our study the ratio of lesion intensity technique offers an excellent criterion to differentiate between the benign and malignant lesions, and the presence of iso- or hypointensity of the collapsed vertebral bodies is suggestive of a benign lesion while hyperintensity is highly suggestive of malignancy. We also found that using the NLMR showed a statistical significant difference between the malignant and benign groups (p<0.0001) with osteoporotic and malignant lesions have mean values of 0.96 (SD 0.25) and 1.73 (SD 0.4) respectively.