Cargando…
Identification of masses in digital mammogram using gray level co-occurrence matrices
Digital mammogram has become the most effective technique for early breast cancer detection modality. Digital mammogram takes an electronic image of the breast and stores it directly in a computer. The aim of this study is to develop an automated system for assisting the analysis of digital mammogra...
Autores principales: | Mohd. Khuzi, A, Besar, R, Wan Zaki, WMD, Ahmad, NN |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Malaysia
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097782/ https://www.ncbi.nlm.nih.gov/pubmed/21611053 http://dx.doi.org/10.2349/biij.5.3.e17 |
Ejemplares similares
-
Deep fusion of gray level co-occurrence matrices for lung nodule classification
por: Saihood, Ahmed, et al.
Publicado: (2022) -
Ensemble Supervised Classification Method Using the Regions of Interest and Grey Level Co-Occurrence Matrices Features for Mammograms Data
por: Yousefi Banaem, Hossein, et al.
Publicado: (2015) -
Detection and Weak Segmentation of Masses in Gray-Scale Breast Mammogram Images Using Deep Learning
por: Kim, Young Jae, et al.
Publicado: (2022) -
A New GLLD Operator for Mass Detection in Digital Mammograms
por: Gargouri, N., et al.
Publicado: (2012) -
Breast Mass Detection in Digital Mammogram Based on Gestalt Psychology
por: Wang, Hongyu, et al.
Publicado: (2018)