Cargando…
Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering
BACKGROUND: Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle mis...
Autores principales: | Freyhult, Eva, Landfors, Mattias, Önskog, Jenny, Hvidsten, Torgeir R, Rydén, Patrik |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098084/ https://www.ncbi.nlm.nih.gov/pubmed/20937082 http://dx.doi.org/10.1186/1471-2105-11-503 |
Ejemplares similares
-
Classification of microarrays; synergistic effects between normalization, gene selection and machine learning
por: Önskog, Jenny, et al.
Publicado: (2011) -
Evaluation of microarray data normalization procedures using spike-in experiments
por: Rydén, Patrik, et al.
Publicado: (2006) -
Normalization of High Dimensional Genomics Data Where the Distribution of the Altered Variables Is Skewed
por: Landfors, Mattias, et al.
Publicado: (2011) -
Pr is a member of a restricted class of σ(70)-dependent promoters that lack a recognizable −10 element
por: del Peso-Santos, Teresa, et al.
Publicado: (2012) -
Merged consensus clustering to assess and improve class discovery with microarray data
por: Simpson, T Ian, et al.
Publicado: (2010)