Cargando…
Class prediction for high-dimensional class-imbalanced data
BACKGROUND: The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly...
Autores principales: | Blagus, Rok, Lusa, Lara |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098087/ https://www.ncbi.nlm.nih.gov/pubmed/20961420 http://dx.doi.org/10.1186/1471-2105-11-523 |
Ejemplares similares
-
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Improved shrunken centroid classifiers for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Boosting for high-dimensional two-class prediction
por: Blagus, Rok, et al.
Publicado: (2015) -
Joint use of over- and under-sampling techniques and cross-validation for the development and assessment of prediction models
por: Blagus, Rok, et al.
Publicado: (2015) -
Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
por: Fu, Guang-Hui, et al.
Publicado: (2020)