Cargando…
Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes
Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of pr...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098188/ https://www.ncbi.nlm.nih.gov/pubmed/21625618 http://dx.doi.org/10.1371/journal.pgen.1001386 |
_version_ | 1782203932222685184 |
---|---|
author | Manogaran, Anita L. Hong, Joo Y. Hufana, Joan Tyedmers, Jens Lindquist, Susan Liebman, Susan W. |
author_facet | Manogaran, Anita L. Hong, Joo Y. Hufana, Joan Tyedmers, Jens Lindquist, Susan Liebman, Susan W. |
author_sort | Manogaran, Anita L. |
collection | PubMed |
description | Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI (+)] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN (+)]. When fused to GFP and overexpressed in [ps(−)] [PIN (+)] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI (+)] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI (+)]. Two classes of gene deletions were identified. Class I deletions (bug1Δ, bem1Δ, arf1Δ, and hog1Δ) reduced the efficiency of [PSI (+)] induction, but formed rings normally. Class II deletions (las17Δ, vps5Δ, and sac6Δ) inhibited both [PSI(+)] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps. |
format | Text |
id | pubmed-3098188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30981882011-05-27 Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes Manogaran, Anita L. Hong, Joo Y. Hufana, Joan Tyedmers, Jens Lindquist, Susan Liebman, Susan W. PLoS Genet Research Article Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI (+)] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN (+)]. When fused to GFP and overexpressed in [ps(−)] [PIN (+)] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI (+)] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI (+)]. Two classes of gene deletions were identified. Class I deletions (bug1Δ, bem1Δ, arf1Δ, and hog1Δ) reduced the efficiency of [PSI (+)] induction, but formed rings normally. Class II deletions (las17Δ, vps5Δ, and sac6Δ) inhibited both [PSI(+)] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps. Public Library of Science 2011-05-19 /pmc/articles/PMC3098188/ /pubmed/21625618 http://dx.doi.org/10.1371/journal.pgen.1001386 Text en Manogaran et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Manogaran, Anita L. Hong, Joo Y. Hufana, Joan Tyedmers, Jens Lindquist, Susan Liebman, Susan W. Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes |
title | Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes |
title_full | Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes |
title_fullStr | Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes |
title_full_unstemmed | Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes |
title_short | Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes |
title_sort | prion formation and polyglutamine aggregation are controlled by two classes of genes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098188/ https://www.ncbi.nlm.nih.gov/pubmed/21625618 http://dx.doi.org/10.1371/journal.pgen.1001386 |
work_keys_str_mv | AT manogarananital prionformationandpolyglutamineaggregationarecontrolledbytwoclassesofgenes AT hongjooy prionformationandpolyglutamineaggregationarecontrolledbytwoclassesofgenes AT hufanajoan prionformationandpolyglutamineaggregationarecontrolledbytwoclassesofgenes AT tyedmersjens prionformationandpolyglutamineaggregationarecontrolledbytwoclassesofgenes AT lindquistsusan prionformationandpolyglutamineaggregationarecontrolledbytwoclassesofgenes AT liebmansusanw prionformationandpolyglutamineaggregationarecontrolledbytwoclassesofgenes |