Cargando…
Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making
A common theoretical view is that attractor-like properties of neuronal dynamics underlie cognitive processing. However, although often proposed theoretically, direct experimental support for the convergence of neural activity to stable population patterns as a signature of attracting states has bee...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098221/ https://www.ncbi.nlm.nih.gov/pubmed/21625577 http://dx.doi.org/10.1371/journal.pcbi.1002057 |
_version_ | 1782203939549085696 |
---|---|
author | Balaguer-Ballester, Emili Lapish, Christopher C. Seamans, Jeremy K. Durstewitz, Daniel |
author_facet | Balaguer-Ballester, Emili Lapish, Christopher C. Seamans, Jeremy K. Durstewitz, Daniel |
author_sort | Balaguer-Ballester, Emili |
collection | PubMed |
description | A common theoretical view is that attractor-like properties of neuronal dynamics underlie cognitive processing. However, although often proposed theoretically, direct experimental support for the convergence of neural activity to stable population patterns as a signature of attracting states has been sparse so far, especially in higher cortical areas. Combining state space reconstruction theorems and statistical learning techniques, we were able to resolve details of anterior cingulate cortex (ACC) multiple single-unit activity (MSUA) ensemble dynamics during a higher cognitive task which were not accessible previously. The approach worked by constructing high-dimensional state spaces from delays of the original single-unit firing rate variables and the interactions among them, which were then statistically analyzed using kernel methods. We observed cognitive-epoch-specific neural ensemble states in ACC which were stable across many trials (in the sense of being predictive) and depended on behavioral performance. More interestingly, attracting properties of these cognitively defined ensemble states became apparent in high-dimensional expansions of the MSUA spaces due to a proper unfolding of the neural activity flow, with properties common across different animals. These results therefore suggest that ACC networks may process different subcomponents of higher cognitive tasks by transiting among different attracting states. |
format | Text |
id | pubmed-3098221 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30982212011-05-27 Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making Balaguer-Ballester, Emili Lapish, Christopher C. Seamans, Jeremy K. Durstewitz, Daniel PLoS Comput Biol Research Article A common theoretical view is that attractor-like properties of neuronal dynamics underlie cognitive processing. However, although often proposed theoretically, direct experimental support for the convergence of neural activity to stable population patterns as a signature of attracting states has been sparse so far, especially in higher cortical areas. Combining state space reconstruction theorems and statistical learning techniques, we were able to resolve details of anterior cingulate cortex (ACC) multiple single-unit activity (MSUA) ensemble dynamics during a higher cognitive task which were not accessible previously. The approach worked by constructing high-dimensional state spaces from delays of the original single-unit firing rate variables and the interactions among them, which were then statistically analyzed using kernel methods. We observed cognitive-epoch-specific neural ensemble states in ACC which were stable across many trials (in the sense of being predictive) and depended on behavioral performance. More interestingly, attracting properties of these cognitively defined ensemble states became apparent in high-dimensional expansions of the MSUA spaces due to a proper unfolding of the neural activity flow, with properties common across different animals. These results therefore suggest that ACC networks may process different subcomponents of higher cognitive tasks by transiting among different attracting states. Public Library of Science 2011-05-19 /pmc/articles/PMC3098221/ /pubmed/21625577 http://dx.doi.org/10.1371/journal.pcbi.1002057 Text en Balaguer-Ballester et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Balaguer-Ballester, Emili Lapish, Christopher C. Seamans, Jeremy K. Durstewitz, Daniel Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making |
title | Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making |
title_full | Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making |
title_fullStr | Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making |
title_full_unstemmed | Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making |
title_short | Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making |
title_sort | attracting dynamics of frontal cortex ensembles during memory-guided decision-making |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098221/ https://www.ncbi.nlm.nih.gov/pubmed/21625577 http://dx.doi.org/10.1371/journal.pcbi.1002057 |
work_keys_str_mv | AT balaguerballesteremili attractingdynamicsoffrontalcortexensemblesduringmemoryguideddecisionmaking AT lapishchristopherc attractingdynamicsoffrontalcortexensemblesduringmemoryguideddecisionmaking AT seamansjeremyk attractingdynamicsoffrontalcortexensemblesduringmemoryguideddecisionmaking AT durstewitzdaniel attractingdynamicsoffrontalcortexensemblesduringmemoryguideddecisionmaking |