Cargando…

Topological Cluster Analysis Reveals the Systemic Organization of the Caenorhabditis elegans Connectome

The modular organization of networks of individual neurons interwoven through synapses has not been fully explored due to the incredible complexity of the connectivity architecture. Here we use the modularity-based community detection method for directed, weighted networks to examine hierarchically...

Descripción completa

Detalles Bibliográficos
Autores principales: Sohn, Yunkyu, Choi, Myung-Kyu, Ahn, Yong-Yeol, Lee, Junho, Jeong, Jaeseung
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098222/
https://www.ncbi.nlm.nih.gov/pubmed/21625578
http://dx.doi.org/10.1371/journal.pcbi.1001139
Descripción
Sumario:The modular organization of networks of individual neurons interwoven through synapses has not been fully explored due to the incredible complexity of the connectivity architecture. Here we use the modularity-based community detection method for directed, weighted networks to examine hierarchically organized modules in the complete wiring diagram (connectome) of Caenorhabditis elegans (C. elegans) and to investigate their topological properties. Incorporating bilateral symmetry of the network as an important cue for proper cluster assignment, we identified anatomical clusters in the C. elegans connectome, including a body-spanning cluster, which correspond to experimentally identified functional circuits. Moreover, the hierarchical organization of the five clusters explains the systemic cooperation (e.g., mechanosensation, chemosensation, and navigation) that occurs among the structurally segregated biological circuits to produce higher-order complex behaviors.