Cargando…
Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis
Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098242/ https://www.ncbi.nlm.nih.gov/pubmed/21625538 http://dx.doi.org/10.1371/journal.ppat.1002044 |
_version_ | 1782203944594833408 |
---|---|
author | Freitag, Johannes Lanver, Daniel Böhmer, Christian Schink, Kay Oliver Bölker, Michael Sandrock, Björn |
author_facet | Freitag, Johannes Lanver, Daniel Böhmer, Christian Schink, Kay Oliver Bölker, Michael Sandrock, Björn |
author_sort | Freitag, Johannes |
collection | PubMed |
description | Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently. |
format | Text |
id | pubmed-3098242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-30982422011-05-27 Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis Freitag, Johannes Lanver, Daniel Böhmer, Christian Schink, Kay Oliver Bölker, Michael Sandrock, Björn PLoS Pathog Research Article Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently. Public Library of Science 2011-05-19 /pmc/articles/PMC3098242/ /pubmed/21625538 http://dx.doi.org/10.1371/journal.ppat.1002044 Text en Freitag et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Freitag, Johannes Lanver, Daniel Böhmer, Christian Schink, Kay Oliver Bölker, Michael Sandrock, Björn Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis |
title | Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis
|
title_full | Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis
|
title_fullStr | Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis
|
title_full_unstemmed | Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis
|
title_short | Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis
|
title_sort | septation of infectious hyphae is critical for appressoria formation and virulence in the smut fungus ustilago maydis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098242/ https://www.ncbi.nlm.nih.gov/pubmed/21625538 http://dx.doi.org/10.1371/journal.ppat.1002044 |
work_keys_str_mv | AT freitagjohannes septationofinfectioushyphaeiscriticalforappressoriaformationandvirulenceinthesmutfungusustilagomaydis AT lanverdaniel septationofinfectioushyphaeiscriticalforappressoriaformationandvirulenceinthesmutfungusustilagomaydis AT bohmerchristian septationofinfectioushyphaeiscriticalforappressoriaformationandvirulenceinthesmutfungusustilagomaydis AT schinkkayoliver septationofinfectioushyphaeiscriticalforappressoriaformationandvirulenceinthesmutfungusustilagomaydis AT bolkermichael septationofinfectioushyphaeiscriticalforappressoriaformationandvirulenceinthesmutfungusustilagomaydis AT sandrockbjorn septationofinfectioushyphaeiscriticalforappressoriaformationandvirulenceinthesmutfungusustilagomaydis |