Cargando…
Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars
BACKGROUND: Milling yield and eating quality are two important grain quality traits in rice. To identify the genes involved in these two traits, we performed a deep transcriptional analysis of developing seeds using both massively parallel signature sequencing (MPSS) and sequencing-by-synthesis (SBS...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098810/ https://www.ncbi.nlm.nih.gov/pubmed/21492454 http://dx.doi.org/10.1186/1471-2164-12-190 |
_version_ | 1782203997906534400 |
---|---|
author | Venu, RC Sreerekha, MV Nobuta, Kan Beló, André Ning, Yuese An, Gynheung Meyers, Blake C Wang, Guo-Liang |
author_facet | Venu, RC Sreerekha, MV Nobuta, Kan Beló, André Ning, Yuese An, Gynheung Meyers, Blake C Wang, Guo-Liang |
author_sort | Venu, RC |
collection | PubMed |
description | BACKGROUND: Milling yield and eating quality are two important grain quality traits in rice. To identify the genes involved in these two traits, we performed a deep transcriptional analysis of developing seeds using both massively parallel signature sequencing (MPSS) and sequencing-by-synthesis (SBS). Five MPSS and five SBS libraries were constructed from 6-day-old developing seeds of Cypress (high milling yield), LaGrue (low milling yield), Ilpumbyeo (high eating quality), YR15965 (low eating quality), and Nipponbare (control). RESULTS: The transcriptomes revealed by MPSS and SBS had a high correlation co-efficient (0.81 to 0.90), and about 70% of the transcripts were commonly identified in both types of the libraries. SBS, however, identified 30% more transcripts than MPSS. Among the highly expressed genes in Cypress and Ilpumbyeo, over 100 conserved cis regulatory elements were identified. Numerous specifically expressed transcription factor (TF) genes were identified in Cypress (282), LaGrue (312), Ilpumbyeo (363), YR15965 (260), and Nipponbare (357). Many key grain quality-related genes (i.e., genes involved in starch metabolism, aspartate amino acid metabolism, storage and allergenic protein synthesis, and seed maturation) that were expressed at high levels underwent alternative splicing and produced antisense transcripts either in Cypress or Ilpumbyeo. Further, a time course RT-PCR analysis confirmed a higher expression level of genes involved in starch metabolism such as those encoding ADP glucose pyrophosphorylase (AGPase) and granule bound starch synthase I (GBSS I) in Cypress than that in LaGrue during early seed development. CONCLUSION: This study represents the most comprehensive analysis of the developing seed transcriptome of rice available to date. Using two high throughput sequencing methods, we identified many differentially expressed genes that may affect milling yield or eating quality in rice. Many of the identified genes are involved in the biosynthesis of starch, aspartate family amino acids, and storage proteins. Some of the differentially expressed genes could be useful for the development of molecular markers if they are located in a known QTL region for milling yield or eating quality in the rice genome. Therefore, our comprehensive and deep survey of the developing seed transcriptome in five rice cultivars has provided a rich genomic resource for further elucidating the molecular basis of grain quality in rice. |
format | Text |
id | pubmed-3098810 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-30988102011-05-21 Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars Venu, RC Sreerekha, MV Nobuta, Kan Beló, André Ning, Yuese An, Gynheung Meyers, Blake C Wang, Guo-Liang BMC Genomics Research Article BACKGROUND: Milling yield and eating quality are two important grain quality traits in rice. To identify the genes involved in these two traits, we performed a deep transcriptional analysis of developing seeds using both massively parallel signature sequencing (MPSS) and sequencing-by-synthesis (SBS). Five MPSS and five SBS libraries were constructed from 6-day-old developing seeds of Cypress (high milling yield), LaGrue (low milling yield), Ilpumbyeo (high eating quality), YR15965 (low eating quality), and Nipponbare (control). RESULTS: The transcriptomes revealed by MPSS and SBS had a high correlation co-efficient (0.81 to 0.90), and about 70% of the transcripts were commonly identified in both types of the libraries. SBS, however, identified 30% more transcripts than MPSS. Among the highly expressed genes in Cypress and Ilpumbyeo, over 100 conserved cis regulatory elements were identified. Numerous specifically expressed transcription factor (TF) genes were identified in Cypress (282), LaGrue (312), Ilpumbyeo (363), YR15965 (260), and Nipponbare (357). Many key grain quality-related genes (i.e., genes involved in starch metabolism, aspartate amino acid metabolism, storage and allergenic protein synthesis, and seed maturation) that were expressed at high levels underwent alternative splicing and produced antisense transcripts either in Cypress or Ilpumbyeo. Further, a time course RT-PCR analysis confirmed a higher expression level of genes involved in starch metabolism such as those encoding ADP glucose pyrophosphorylase (AGPase) and granule bound starch synthase I (GBSS I) in Cypress than that in LaGrue during early seed development. CONCLUSION: This study represents the most comprehensive analysis of the developing seed transcriptome of rice available to date. Using two high throughput sequencing methods, we identified many differentially expressed genes that may affect milling yield or eating quality in rice. Many of the identified genes are involved in the biosynthesis of starch, aspartate family amino acids, and storage proteins. Some of the differentially expressed genes could be useful for the development of molecular markers if they are located in a known QTL region for milling yield or eating quality in the rice genome. Therefore, our comprehensive and deep survey of the developing seed transcriptome in five rice cultivars has provided a rich genomic resource for further elucidating the molecular basis of grain quality in rice. BioMed Central 2011-04-14 /pmc/articles/PMC3098810/ /pubmed/21492454 http://dx.doi.org/10.1186/1471-2164-12-190 Text en Copyright ©2011 Venu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Venu, RC Sreerekha, MV Nobuta, Kan Beló, André Ning, Yuese An, Gynheung Meyers, Blake C Wang, Guo-Liang Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars |
title | Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars |
title_full | Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars |
title_fullStr | Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars |
title_full_unstemmed | Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars |
title_short | Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars |
title_sort | deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098810/ https://www.ncbi.nlm.nih.gov/pubmed/21492454 http://dx.doi.org/10.1186/1471-2164-12-190 |
work_keys_str_mv | AT venurc deepsequencingrevealsthecomplexandcoordinatedtranscriptionalregulationofgenesrelatedtograinqualityinricecultivars AT sreerekhamv deepsequencingrevealsthecomplexandcoordinatedtranscriptionalregulationofgenesrelatedtograinqualityinricecultivars AT nobutakan deepsequencingrevealsthecomplexandcoordinatedtranscriptionalregulationofgenesrelatedtograinqualityinricecultivars AT beloandre deepsequencingrevealsthecomplexandcoordinatedtranscriptionalregulationofgenesrelatedtograinqualityinricecultivars AT ningyuese deepsequencingrevealsthecomplexandcoordinatedtranscriptionalregulationofgenesrelatedtograinqualityinricecultivars AT angynheung deepsequencingrevealsthecomplexandcoordinatedtranscriptionalregulationofgenesrelatedtograinqualityinricecultivars AT meyersblakec deepsequencingrevealsthecomplexandcoordinatedtranscriptionalregulationofgenesrelatedtograinqualityinricecultivars AT wangguoliang deepsequencingrevealsthecomplexandcoordinatedtranscriptionalregulationofgenesrelatedtograinqualityinricecultivars |