Cargando…

Evaluating Nuclei Concentration in Amyloid Fibrillation Reactions Using Back-Calculation Approach

BACKGROUND: In spite of our extensive knowledge of the more than 20 proteins associated with different amyloid diseases, we do not know how amyloid toxicity occurs or how to block its action. Recent contradictory reports suggest that the fibrils and/or the oligomer precursors cause toxicity. An esti...

Descripción completa

Detalles Bibliográficos
Autores principales: Sorci, Mirco, Silkworth, Whitney, Gehan, Timothy, Belfort, Georges
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098880/
https://www.ncbi.nlm.nih.gov/pubmed/21625464
http://dx.doi.org/10.1371/journal.pone.0020072
Descripción
Sumario:BACKGROUND: In spite of our extensive knowledge of the more than 20 proteins associated with different amyloid diseases, we do not know how amyloid toxicity occurs or how to block its action. Recent contradictory reports suggest that the fibrils and/or the oligomer precursors cause toxicity. An estimate of their temporal concentration may broaden understanding of the amyloid aggregation process. METHODOLOGY/PRINCIPAL FINDINGS: Assuming that conversion of folded protein to fibril is initiated by a nucleation event, we back-calculate the distribution of nuclei concentration. The temporal in vitro concentration of nuclei for the model hormone, recombinant human insulin, is estimated to be in the picomolar range. This is a conservative estimate since the back-calculation method is likely to overestimate the nuclei concentration because it does not take into consideration fibril fragmentation, which would lower the amount of nuclei CONCLUSIONS: Because of their propensity to form aggregates (non-ordered) and fibrils (ordered), this very low concentration could explain the difficulty in isolating and blocking oligomers or nuclei toxicity and the long onset time for amyloid diseases.