Cargando…

Aspartoacylase-LacZ Knockin Mice: An Engineered Model of Canavan Disease

Canavan Disease (CD) is a recessive leukodystrophy caused by loss of function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme that hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. The neurological phenotypes of different rodent models of CD vary c...

Descripción completa

Detalles Bibliográficos
Autores principales: Mersmann, Nadine, Tkachev, Dmitri, Jelinek, Ruth, Röth, Philipp Thomas, Möbius, Wiebke, Ruhwedel, Torben, Rühle, Sabine, Weber-Fahr, Wolfgang, Sartorius, Alexander, Klugmann, Matthias
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098885/
https://www.ncbi.nlm.nih.gov/pubmed/21625469
http://dx.doi.org/10.1371/journal.pone.0020336
Descripción
Sumario:Canavan Disease (CD) is a recessive leukodystrophy caused by loss of function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme that hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. The neurological phenotypes of different rodent models of CD vary considerably. Here we report on a novel targeted aspa mouse mutant expressing the bacterial β-Galactosidase (lacZ) gene under the control of the aspa regulatory elements. X-Gal staining in known ASPA expression domains confirms the integrity of the modified locus in heterozygous aspa lacZ-knockin (aspa(lacZ/+)) mice. In addition, abundant ASPA expression was detected in Schwann cells. Homozygous (aspa(lacZ/lacZ)) mutants are ASPA-deficient, show CD-like histopathology and moderate neurological impairment with behavioural deficits that are more pronounced in aspa(lacZ/lacZ) males than females. Non-invasive ultrahigh field proton magnetic resonance spectroscopy revealed increased levels of NAA, myo-inositol and taurine in the aspa(lacZ/lacZ) brain. Spongy degeneration was prominent in hippocampus, thalamus, brain stem, and cerebellum, whereas white matter of optic nerve and corpus callosum was spared. Intracellular vacuolisation in astrocytes coincides with axonal swellings in cerebellum and brain stem of aspa(lacZ/lacZ) mutants indicating that astroglia may act as an osmolyte buffer in the aspa-deficient CNS. In summary, the aspa(lacZ) mouse is an accurate model of CD and an important tool to identify novel aspects of its complex pathology.