Cargando…
Dopamine-Signaled Reward Predictions Generated by Competitive Excitation and Inhibition in a Spiking Neural Network Model
Dopaminergic neurons in the mammalian substantia nigra display characteristic phasic responses to stimuli which reliably predict the receipt of primary rewards. These responses have been suggested to encode reward prediction-errors similar to those used in reinforcement learning. Here, we propose a...
Autores principales: | Chorley, Paul, Seth, Anil K. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099399/ https://www.ncbi.nlm.nih.gov/pubmed/21629770 http://dx.doi.org/10.3389/fncom.2011.00021 |
Ejemplares similares
-
Neuronal-Plasticity and Reward-Propagation Improved Recurrent Spiking Neural Networks
por: Jia, Shuncheng, et al.
Publicado: (2021) -
Dopamine Signaling in reward-related behaviors
por: Baik, Ja-Hyun
Publicado: (2013) -
CRBA: A Competitive Rate-Based Algorithm Based on Competitive Spiking Neural Networks
por: Cachi, Paolo G., et al.
Publicado: (2021) -
Brain Inspired Sequences Production by Spiking Neural Networks With Reward-Modulated STDP
por: Fang, Hongjian, et al.
Publicado: (2021) -
Excitation-Inhibition Balanced Neural Networks for Fast Signal Detection
por: Tian, Gengshuo, et al.
Publicado: (2020)